

MODULE DESCRIPTION

Module title	Module code
Physics for informatics	

Department where the module is delivered
Department of Radiophysics
Faculty of Mathematics and Informatics
Vilnius University

Cycle	Type of the module		
First	Optional		

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	4 semester	Lithuanian

Prerequisites Prerequisites: Mathematics for Software Engineering III, Mathematical logic

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	60	70

Durness of the modules programme competences to be developed						
Purpose of the module: programme competences to be developed Module aim is for students to convey the basic patterns and descriptions, which combine mechanics, molecular structure,						
solid state, electromagnetic radiation, atomic ar		s, molecului structure,				
sond state, electromagnetic radiation, atomic and nuclear physics units.						
Generic competences:						
• Communication and collaboration (GR	<i>K1</i>).					
Specific competences:						
• Knowledge and skills of underlying co	onceptual basis (SK4).					
Technological and methodological kno	owledge and skills, professional competence (SK6).					
		•				
Learning outcomes of the module:	Teaching and learning methods	Assessment				
students will be able to	reaching and rearining methods	methods				
Understand and review the basic physics						
regularities associated with the movement of						
bodies in space, time, thermodynamic	Problem oriented teaching with demonstrations	Two reference works				
processes, current transfer characteristics of	and final examin					
solids as well as the phenomena of radiation,	FJ 1	written form.				
discuss on these topics and employ the						
knowledge in practice.						

	Contact hours				Self-study work: time and assignments				
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
Mechanics:									1. The main characteristics of
 1.Basic moving body characteristics: a) the characterization of bodies in space and time, speed, acceleration, angular velocity, angular acceleration, b) the classic and relativistic movements, 	2						2	3	moving bodies dimensionderived units of measuredefinitions.2. Galileo transformations.Lorenz transformations.
c) Galileo transformations. Lorentz	2						2	2	Relative space and time.
transformations,	2	0.5	┣				25	4	3. Newton's laws, gravity force, motion content (pulse),
d) dynamic of the mechanical principles,e) conservation laws.	23	0.5					2.5 3.5	4	work, power, kinetic energy,
Molecular Physics:	5	0.5					3.5	4	potential energy.
a) structure of materials,	3	0.5					3.5	4	4. Laws of the pulce, pulce
b) laws of thermodynamics,	3	0.5					3.5	4	momentum and energy
c) properties of solid-state materials,	3	0.5					3.5	4	conservation.
d) liquids,	2	0.5					2.5	4	5. Quantum numbers: the
e) gases. The electrical conductivity of the materials:	2	0.5					2.5	4	fundamental "n" orbital "l", the magnetic orbital
									 Pauli schedule. Total max electronic states denomination number. The shells symbols: K, L, M, N, O, P, Q. The shell electrons s, p, d, f subgroups. 6. The I-III thermodynamic laws. 7. The crystalline and amorphous status of solids, deformation, Hooke's law, Young's modulus, thermal expansion. 8. The fluid viscosity, Stokes experiment, irrigation, capillarity. 9. Real and ideal gases. Claudius, Clapeyron- Mendeleev equation, isothermal, isobaric, isochoric processes.
a) the metals in electric field,	2	0.5					2.5	4	10. Rikke, Mandelstam- Papaleksi, Stewart-Thomson, Drude-Lorentz, Wideman- Franco, Joules-Lenz works.
b) the semiconductors and dielectrics in electric field,	1	0.5					1.5	2	11. Intrinsic and extrinsic semiconductors, band models, Fermi level, the principle of Paul. Polar and non-polar dielectrics.
c) ferroelectrics,	2	0.5					2.5	3	12. Polarization phenomena of

						ferroelectric, hysteresis loop, permittivity, phase transitions.
d) diamagnetic, paramagnetic, ferromagnetic in magnetic field,	2	0.5		2.5	4	13. Magnetic field , permeability, magnetic domains, permeability dependence on the magnetic field magnitude. Bohr magneton.
e) superionics,	3	0.5		3.5	4	14. Frenkel, Schottky point defects, mass and charge transfer supeionic materials
f) superconductors.	2	0.5		2.5	3	15. Low and high-temperature superconductivity. Resistivity anomalies.
The applications of solid state materials	5	0.5		5.5	6	16. Fuel cells, solid-state power batteries. gas sensors, electric capacitors (ionistors), O_2 gas pumps, electrolyzes, electrochromic displays, memory cells, Lillie's neural model.
Thermal radiation	5	0.5		5.5	6	17. Kirchhoff's law of thermal radiation, and the Stefan Boltzmann works Vino's law of thermal radiation, Planck and Rayleigh thermal radiation patterns.
Basics of the atomic and nuclear physics	3	0.5		3.5	4	18. Bohr's postulates. Nuclear fission and synthesis. The mass defect, nuclear binding energy. α - decay, β^- decay, β^+ decay, electronic catch, γ - radiation.
Space irradiation	1			1	1	
Reference works in written form	<u> </u>			2		
Exam in written form		_		2		
Total	48	8		60	70	

Assessment strategy	Weig	Deadline	Assessment criteria
	ht %		
The first reference work in	25%	The seventh	Control work combines the issues that were discussed during
written form		week of	lectures about mechanics, molecular physics and current
		semester	transfer characteristics in solids.
The second reference work	25%	Fourteenth	Control work combines the issues that were discussed about
in written form		week of the	solid-state functional elements application, thermal radiation
		semester	effects, atomic and nuclear physics regularities.
Final exam in written form	50%	During exam	The student during the exam accurately formulates the
		session	physically regularities and describes them in mathematical
			terms.

Author	Publis	Title	Number	Publisher or URL
	hing		or	
	year		volume	
Required reading				
A.F.Orliukas	2013	Slides of the lectures		www.vu.lt
V.Grivickas, A.F.Orliukas,	2008	Materials science (in		Progresus, Vilnius,
A.Žindulis, S.Tamulevičius		Lithuanian)		www.progresus.lt
J.D.Cutnell, K.W.Johnson	2007	Physics		Southern Illinois University at
				Carbondale
				www.wiley.com/college/cutnell

V.Matvejevas	1982	Mechanics and relativity theory (in Lithuanian)	www.ebooks.vgtu.lt.reeder/fizika/379
A.F. Orliukas	2004	Superionic conductors (in Lithuanian)	VUL, http://www.leidykla.vu.lt
J.D.Cutnell, K.W.Johnson	2006	Essentials of Physics	Southern Illinois University at Carbondale, <u>www.wiley.com/college/</u> cutnell
Recommended reading			
P. Brazdžiūnas	1965	Physics IV (in Lithuanian)	Mokslas, Vilnius, www.rfk.ff.vu.lt/doc/fizika_informatik ams.ppt
T.Kudo, K.Fueki		Solid State Ionics	KODANSHA, VCH www.amazon.co.uk