

MODULE DESCRIPTION

Module title	Module code
Mathematical modeling	
- · · · · · · · · · · · · · · · · · · ·	

Lecturer(s)	Department where the module is delivered
Coordinator: assoc. prof. dr. Algirdas Ambrazevičius	Department of Differential Equations and Numerical
	Mathematics, Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module
First	Optional

Mode of delivery	Semester or period when the module is delivered	Language of instruction	
Face-to-face	7 th semester	Lithuanian	

Prerequisites Prerequisites: Mathematics for Software Engineering I and II; Differential Equations.

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	68	62

Purpose of the module: programme competences to be developed							
Purpose of the module – to develop abilities to create and investigate mathematical models describing the various							
processes. Develop abstract and analytical think	ing.	-					
Generic competences:							
Communication and collaboration (GR	(1).						
• Life-long learning (<i>GK</i> 2).							
• Social responsibility (<i>GK3</i>).							
Specific competences:							
• Knowledge and skills of underlying co	nceptual basis (SK4).						
	•						
Learning outcomes of the module:	Teaching and learning methods	Assessment					
students will be able to	reaching and learning methods	methods					
Create mathematical models of various							
processes, know and understand the basic							
concepts and methods.							
Formulate and solve basic mathematical	Lactures individual reading laboratory works	Laboratory works					
models.	(problems solving)	exam (written)					
Use a variety of differential equations theory	(problems solving)	exam (written)					
methods to solve mathematical models.							
Select and apply a variety of instructional							
strategies and techniques.							

Content: breakdown of the topics		Contact hours						Self-study work: time and assignments	
		Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
1. Application of the fundamental laws of nature to create mathematical models. The calculus of variations and its application.	8				4		12	15	
2. The simplest model of nonlinear processes. The simplest model of the equations of mathematical physics. Environmental models.	8				4		12	15	Individual reading, laboratory works
3. Differential equations of first and higher order. System of differential equations.	8				12		20	16	(problems solving)
4. Partial differential equations of the second order, their classification, reduction to canonical form, methods of solution.	8				12		20	16	
Exam (written)		2					4		2 hours for tutorial, 2 hours for exam
Total									

Assessment strategy	Weig	Deadline	Assessment criteria
	ht %		
3 laboratory works	50	During	The specific mathematical models are studied. Ranked in the
		semester	10 points system, in proportion to the number of the resolved
			problems. Then this result is multiplied by a factor 0.5.
Exam (written)	50	During exam	The exam consists of theoretical questions and problems.
		session	Ranked in the 10 points system. Then this result is multiplied
			by a factor 0.5.

Author	Publis	Title	Number or	Publisher or URL
	hing		volume	
	year			
Required reading				
Algirdas Ambrazevičius	2006	Mathematical modeling (in		http://www.mif.vu.lt/katedros/d
		Lithuanian)		lsm/darbuotojai/algam/mm.htm
Recommended reading				
A.A. Samarskis, A.P.	1997	Mathematical modeling		Maskva, "FizMatLit", 270 p.
Michailovas,				
A. Ambrazevičius	1996	Equations of mathematical		Vilnius, 380 p.
		physics. Part I (in Lithuanian)		
P. Golokvosčius	2000	Differential equations (in		Vilnius, TEV, 512 p.
		Lithuanian)		