

MODULE DESCRIPTION

Module title	Module code
Differential Equations	

Lecturer(s)	Department where the module is delivered
Coordinator: prof. dr. Stasys Rutkauskas	Department of Differential Equations and Numerical
	Mathematics, Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module
First	Optional

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	5 th and 7 th semester	Lithuanian

Prerequisites
Prerequisites: Mathematics for Software Engineering I and II.

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	68	62

Purpose of the module: programme competences to be developed							
Purpose of the module is to educate the competence by expansion of the systemic perception of mathematical							
knowledge, to educate the competence in the modeling of various processes by ordinary differential equations (ODE's)							
and the competence by solving of such models.	and the competence by solving of such models.						
 Generic competences: Communication and collaboration (GK1). Life-long learning (GK2). Specific competences: Knowledge and skills of underlying conceptual basis (SK4). Software development knowledge and skills (SK5). 							
Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods					
Communicate in a field of ODE's and related areas.							
Define the main concepts of the ODE's theory and							
illustrate them by the examples.		Tasts (written)					
State and prove the main propositions of the theory of							
ODE's.	Lectures						
Apply acquired knowledge by solving of the problems	Practices	Exam (written)					
related to ODE's.	Individual reading						
Model the simplest determinable dynamical processes	Solving of given problems						
and justify the adequacy of a model to the real process;							
Analyse and solve mathematical models describing by ODE's.							

	Contact hours					Self-study work: time and assignments			
Content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
Main concepts and definitions. First order differential equations. Particular and general solutions, general integral. Directions field. Caushy problem, existence and uniqueness of their solution.	4			2			6	4	
Main types of the first order equations and the methods of their integration.	4			4			8	6	
Equations of the higher order. Caushy problem, existence and uniqueness of their solution. Order reduction of the equations	4			2			6	4	
Linear equations of higher order and their general properties. Equations with constant coefficients. Characteristic polynomial. The structure of linear independent solutions.	4			4			8	6	Individual study of
Second order linear equations (homogeneous and non-homogeneous). Method of the constants variations. Equations of free and forced oscillations, equation of electric chain and others.	4			4			8	6	literature, solving of given problems
The systems of differential equations and their general properties Caushy problem. Systems of the linear equations with constant coefficients. Integration of these systems.	4			4			8	6	
Mechanical interpretation of the systems of normal differential equations. Phase trajectories. Balance points.	4			4			8	6	
Conception of the stability (in the Liapunov sense). Classification of the balance points and the phase trajectories in their neighborhood.	4			4			8	6	
Tests (written)		~		4			4	6	0.1
Exam (written)	- 22	2		- 22			4	12	2 hours for tutorial, 12 hours for preparation, 2 hours for exam
lš viso	32	2		32			68	62	

Assessment strategy	Weig	Deadline	Assessment criteria
	ht %		
Tests (written)	40	During the	Two tests are written: in the middle and at the end of the semester.
		semester	The results of each test are valued in the decimal system . The
			final mark P_1 is given by formulae
			P(K+K)>02
			here K_1 and K_2 are the ratings of the first test and of the second
			test.
Exam (written)	60	During exam	The exam tasks include theoretical questions and some practical
		session	problems of ODE's. The mark P_2 of exam is given by the
			formulae
			$P_2 = E \times Q$ G
			here E is the exam rating in the decimal system.

Author	Publis hing	Title	Number volume	or	Publisher or URL
	year				
Required reading		•			
P. Golokvosčius	2000	Differential Equations (in			Vilnius: TEV
		Lithuanian)			
S. Rutkauskas	2008	Introduction to Theory			Vilnius: VPU press
		Differential Equations (in			
		Lithuanian)			
Recommended reading					
D.K. Arrowsmith,	1982	Ordinary Differential			London New York:
C.M. Place		Equations. A qualitative			Chapman and Hall
		approach with applications			
S.Rutkauskas	2008	Asymptotic Methods for			Vilnius, Mokslo aidai
		Ordinary Differential			
		Equations (in Lithuanian)			
J. D. Meiss	2007	Differential Dynamical			Philadelphia: SIAM,
		Systems			Mathematical
					Modeling and Computation
А.Ф. Филиппов	2002	Problems of Differential			Москва-Ижевск: НИЦ
		Equations (in Russian)			«Регулярная и хаотическая
					динамика»