

MODULE DESCRIPTION

Module title	Module code
Combinatorics and graph theory	

Lecturer(s)	Department where the module is delivered
Coordinator: dr. Gintaras Skersys	Department of Computer Science
	Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module		
First	Optional		

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	5, 7 semester	Lithuanian

Prerequisites

Prerequisites: Discrete mathematics

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	72	58

Purpose of the module: programme competences to be developed

Purpose of the module – provide basic combinatorics and graph theory knowledge which will help to study other mathematical and computer science subjects and to read mathematical and computer science literature. It also aims to develop analytical thinking and basic skills needed to independently construct discrete models of the reality and to apply the acquired knowledge in solving practical problems.

Specific competences:

Knowledge and skills of underlying conceptual basis (SK4).

Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods
To define principal combinatorics and graph theory concepts, to illustrate them by examples.	Lecture	
Formulate and prove principal combinatorics and graph theory statements.	Practice classes Individual reading	Test (written) Exam (written)
Apply combinatorics and graph theory methods to construct discrete models and to solve practical problems related to them.	Problem solving	

Content: breakdown of the topics		Contact hours					Self-study work: time and assignments		
		Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
1. Arrangements and combinations. Binomial and	5			4			9	8	
polynomial coefficients.								_	
2. Inclusion-exclusion principle. Examples.				4			7	7	
3. Stirling numbers.				2			5	4	
4. Generating functions. Recurrence.				6			11	10	
5. Basic concepts of graph theory.	4			4			8	7	Individual reading
6. Forest and trees. Spanning trees. Minimum	3			4			7	6	Problem solving
spanning trees.	2			2			4	4	
7. Relations of graph parameters.							-	-	
8. Planar graphs. Euler's theorem.	2			2			4	4	
9. Colouring of graphs. 10. Number of trees. The Prüfer code of a tree.				2			•	-	
	3	2		2			5	4	01 6 4 4 1 1
Test		2					4		2 hours for tutorial, 2 hours for test.
Exam		2					4		2 hours for tutorial,
									2 hours for exam.
Total	32	4		32			72	58	

Assessment strategy	Weight %	Deadline	Assessment criteria	
Test (written)	50	During the	Test and exam consist of tasks of diverse difficulty (theory	
		semester	questions and exercises). Each task is assessed as follows:	
Exam (written)	50	Exam session	100% – excellent knowledge and abilities;	
			75% – strong knowledge and abilities;	
			50% – mediocre knowledge and abilities;	
			25% – minimal knowledge and abilities;	
			0% – minimal requirements are not satisfied.	

Author	Publis hing year	Title	Number volume	or	Publisher or URL
Required reading	ycui		<u> </u>		
M. Bloznelis	1996	Combinatorics lectures (in Lithuanian)			Vilnius: Vilnius university press
E. Manstavičius	2006	Discreet mathematics: basics of combinatorics and graph theory. Lecture notes (in Lithuanian)			http://www.mif.vu.lt/katedros/tt sk/bylos/man/files/KOMB- 21.pdf
Recommended reading	g	·			
Rosen K.H.	2010	Discrete Mathematics and Its Applications, Sixth Edition			McGraw-Hill Higher Education
Wilson R.J.	1996	Introduction to Graph Theory, Fourth edition			Longman
P.J. Cameron	1994	Combinatorics: Topics, Techniques, Algorithms			Cambridge University Press