

MODULE DESCRIPTION

Module title	Module code
Operating Systems	

Lecturer(s)	Department where the module is delivered
Coordinator: assoc. prof. dr. Antanas Mitašiūnas	Department of Computer Science
	Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module
First	Optional

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	6 semester	Lithuanian

Prerequisites Prerequisites: Procedural programming, Computer architecture, Algorithms and data structures

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	68	62

Purpose of the module: programme competences to be developed					
Purpose of the module – to build the competence in Operating systems, familiarize the students with fundamental principles of design and operation of Multiprogramming Operating Systems, analyse components of operating systems and their aggregation a whole by implementation of modelling multiprogramming operating system. <i>Generic competences:</i>					
 Communication and collabor Life-long learning (GK2). Specific competences: Knowledge and skills of und 	 Communication and collaboration (<i>GK1</i>). Life-long learning (<i>GK2</i>). Specific competences: 				
 Knowledge and skins of under Software development knowledge Technological and methodological 	ledge and skills (SK5). ogical knowledge and skills, professional competence (<i>SK6)</i> .			
Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods			
 operate operating systems concepts and notions fluently and focused; know structure and principles of operation of multiprogramming operating systems; 	 Teaching methods: Lectures; Laboratory works. Learning methods: Actual knowledge gathering and accumulation; Knowledge synthesis – generalization, abstraction and aggregation of actual 	 Examination. Laboratory works presentation. Criteria: Use of exercises to assess understanding and ability to apply 			
 able to design and develop simplified multiprogramming operating system; Acquire team work experience. 	 knowledge; Knowledge analysis – new knowledge matching with aggregated knowledge, their verification and correction is needed; Application of aggregated and validated knowledge. 	 theoretical knowledge Ability to design and develop simplified multiprogramming operating system 			

			Contact hours					Self-study work: time and assignments	
Content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
Evolution and categories of Operating Systems	2				2		4	2	I. Design of Virtual and
Virtual Machines	2				4		6	6	Real machine.
Parallel processes, their interaction and notation	2				2		4	2	II. Implementation of
Critical section problem and its solution					2		4	2	Virtual and Real
Semaphores and their implementation.					2		6	4	machine.
Applications						8			III. Design of simplified
Virtual memory and implementation	4				4	0	8	6	multiprogramming
Descriptors and primitives of processes and	6				8		14	12	operating system.
resources									IV. Implementation of
Microkernel architecture	2				2		4	2	simplified
Input-output processes	2				2		4	2	multiprogramming
File system	6				4		10	6	operating system.
Self-preparation and exam		2					4	18	2 hours for tutorial, 18
									hours for preparation, 2 hours for exam
Total	32	2			32	8	66	62	

Assessment strategy	Weig	Deadline	Assessment criteria
	ht %		
Exam (written)	60	Exam session	Evaluation of theoretical knowledge using open question tasks.
			Performance of tasks is assessed in points from 0 to 3. The
			points of 2 tasks are summed up. The assessment result is a
			value from 0 to 6.
Performance of laboratory	40	$3^{\rm rd}$, $7^{\rm th}$, $12^{\rm th}$	Four laboratory works are assessed. The weight of first two
works		and 16 th week	works - 0,75 point. The weight of third work - 1 point and
		of semester	fourth – 1,5 points.
			Minimal value of assessment that ensures the right to pass
			exam is 1 point, i.e. 25 % of assessment fully performed all
			laboratory works.

Author	Publis	Title	Number or	Publisher or URL
	hing		volume	
	year			
Required reading				
Lubomir F. Bic, Alan C.	2003	Operating Systems Principles		Prentice-Hall
Shaw.				
William Stallings.	2001	Operating systems. Internals		Prentice-Hall
		and Design Principles		
Abraham Silberschatz,	2003	Structured computer		John Wiley & Sons, Inc.
Peter B. Galvin, Greg		organization		
Gagne.				
Recommended reading				
Andrew S.Tanenbaum	2001	Modern Operating Systems		Prentice-Hall
Gary J. Nutt.	2002	Operating Systems. A		Addison Wesley
		Modern Perspective,		