

MODULE DESCRIPTION

Module title	Module code
Logic Programming	

Lecturer(s)	Department where the module is delivered
Coordinator: prof. dr. Rimantas Vaicekauskas	Department of Computer Science
	Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module		
First	Optional		

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	5^{th} and 7^{th} semester	Lithuanian and English

Prerequisites: Data structures and algorithms, Mathematical logic.

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	68	62

Purpose of the module: programme competences to be developed
Purpose of the module: to introduce the key concepts and principles of the Logic programming, to present Prolog
problem-solving techniques.

Generic competences:

- Communication and collaboration (*GK1*).
- Life-long learning (*GK2*).

Specific competences:

- Knowledge and skills of underlying conceptual basis (*SK4*).
- Software development knowledge and skills (*SK5*).

Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods
 Understand the principles of declarative specification using Horn clause logic. Explain procedural behavior of the Prolog program. Use Prolog statements and structures for knowledge representation and reasoning. Create, debug, and evaluate small-to-moderate size Prolog program as software prototype. Use advanced Logic Programming techniques for solving problems related to the Artificial Intelligence (AI) applications. 	Lectures, problem-oriented teaching, case studies, literary reading, individual work, tutorials, laboratory work.	Laboratory works and results presentation, written exam (open, semi- open and close- ended questions and tasks).

		I	Co	ntact	hours	;		Sel	f-study work: time and assignments
Content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work	Tutorial during LW	Contact hours	Self-study hours	Assignments
Introduction to logic programming (LP) paradigm. Declarative vs. procedural programming. Representation of knowledge with Horn clauses. The meaning of the logic program. Relation between LP and Artificial Intelligence.	4				5		9	9	
Prolog as a logic programming language. Procedural semantics of Prolog: execution model in term of goals and sub-goals, unification (pattern matching) and backtracking	4				5		9	9	
Recursive programming with Prolog: representation and processing of simple data structures– lists and trees. Prolog arithmetic	2				4	0	6	6	Individual reading. Self-preparation for
Advanced search techniques: generate –and –test search pattern, searching space–state graphs.	4				4	8	8	8	laboratory works. Self- control tasks.
Manipulating symbolic expressions. Symbolic differentiation example	2				2		4	4	
Interpreters and rule-based systems.	4				4		8	8	
Grammars and applications to natural language understanding.	3				2		5	5	
Meta-predicates <i>assert, retract, findall.</i> Breadth-first search applications. Searching games tree.	3				2		5	5	
Incomplete data structures: difference lists, dictionaries.	3				2		5	5	
Prolog implementations. Parallel Prolog.	3				2	1	5	3	
Tutorials during the semester		2					2		
Final exam (written)							2		
Total	32				32	8	68	62	

Assessment strategy	Weig ht %	Deadline	Assessment criteria
Laboratory works	40	There are 4 assignments with deadlines 3 th , 7 th , 11 th , 16 th week of the semester.	During the semester, a student is required to carry out 4 laboratory works (individual Prolog programming assignments). The 1 st laboratory work is to describe logical relations between well-known entities. The 2 nd assignment requires using recursive rules. The third one is about list processing. The 4 th is to write a Prolog program that solves an AI-related problem. Each laboratory work is evaluated from 0 to 1 points and total (4 points) is equivalent to 40% of the final score. Assessment criteria are: soundness and correctness of the program, relevance to the Prolog programming paradigm, ability to defend solutions and answer to the questions.

Exam (written)	60	During exam session	During the exam, it is possible to get at most 6 points, which are equivalent to 60% of the final score. The exam is divided
			into 3 parts. For the first part, the student must answer various questions (open, semi-open and close-ended questions and
			tasks) of diverse complexity (0-3 points). For the second part,
			the student must practically solve a given problem, which involves writing the code in Prolog (0-2 points). For the third
			part, the student must demonstrate an understanding of the
			given topic by writing a thorough summary and providing explanatory examples (0-1 points).

Author	Publishing	Title	Number or	Publisher or URL			
	year		volume				
Required reading							
Clocksin W.F.,	2003	Programming in Prolog: Using	5^{th} ed.	Springer			
Mellish C.S.		the ISO Standard					
Sterling, L. and	1994	The Art of Prolog	2^{nd} ed.	MIT Press			
Shapiro, E.		-					
Recommended reading							
Ulf Nilsson, Jan	2012	Logic, Programming and	2^{nd} ed.	http://www.ida.liu.se/~ulfni/l			
Maluszynski		Prolog		<u>pp/</u>			
Ivan Bratko	2000	Prolog Programming for	$3^{\rm rd}$ ed.	Addison Wesley			
		Artificial Intelligence					