

COURSE UNIT DESCRIPTION

Course unit title	Course unit code			
Functional Programming				
Lecturer(s)				
Coordinator: Viačeslav Pozdniakov	Department of Software Engineering			
	Faculty of Mathematics and Informatics			
Other lecturers:	Vilnius University			

Cycle	Type of the course unit		
1 st (BA)	Optional		

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	5 and 7 semester	Lithuanian or English

Prerequisites: Procedural Programming, Object Oriented Programming

Number of credits allocated	Student's workload	Contact hours	Individual work
5	130	66	64

Purpose of the course unit: programme competences to be developed

Purpose of the course unit – provide functional programming basics, introduce modern functional programming languages.

Generic competences:

- Communication and collaboration (GK1).
- Life-long learning (GK2).
- Social responsibility (*GK3*).

Specific competences:

- Knowledge and skills of underlying conceptual basis (SK4).
- Software development knowledge and skills (SK5).
- Technological and methodological knowledge and skills, professional competence (SK6).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
Understand principles of functional programming and recognize them as well. Write stateless (without any variables) programs. Get introduced to Category theory. Investigate features of any other functional programming languages.	Lectures, discussions, laboratory works, self- dependent reading.	Written exam, laboratory works.
templates.		

	Contact hours						Individual work: time and assignments		
Course content: breakdown of the topics		Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Individual work	Assignments
Differences between procedure and function,	2				2		4	2	
recursion	2				2		4	2	
Lists, tuples, tall fecursion	2				2	2	4	<u> </u>	Self-dependent reading.
Higher order functions. Lazy evaluation					<u></u>		4	4	Laboratory work 1.
inheritance	4				4		o	U	
Input/output in Haskell programs	2				2		4	4	Self-dependent reading.
Monads (IO, MonadPlus, etc.)	4				4	2	8	4	Laboratory work 2
Monad transformers	4				4		8	9	
Testing	2				2		4	8	
Parser combinators	2				2		4	2	Self-dependent reading.
Concurrent programming	3				3	4	6	2	Laboratory work 3
Software transactional memory	2				2		4	2	
Functional pearls	3				3		6	2	
Preparation for exam, exam itself		1					2	17	1 h for tutorial
									I h for exam
Total	32	1			32	8	66	64	
10181	32	I			34	0	00	04	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
Exam	50%	January	All correctly answered exam tasks give 5 points.
			A student can take part in the examination only if he/she
			gets at least 1 point for laboratory works.
Laboratory work 1	20%	Week 6	Correctly written program gives 2 points. One week
Laboratory work 2	20%	Week 12	penalty after deadline – 0.2 points.
Laboratory work 3	10%	Week 16	Correctly written program gives 1 points. One week
			penalty after deadline -0.1 points.

Author	Publis	Title	Number or	Publisher or URL
Author	hing	The	volume	I UDIISIICI OI UKL
	vear		vorunie	
Required reading	yeur	I	<u> </u>	
Bryan O'Sullivan, John	2009	Real World Haskell		O'Reilly
Goerzen, and Don				
Stewart				
Recommended reading				
Benjamin C. Pierce	1991	Basic Category Theory for		The MIT Press
-		Computer Scientists		
		-		
		(Foundations of Computing)		
Will Kurt	(2017)	Get Programming with		Manning Publications
		Haskell		_
Christopher Allen, Julie	(2017)	Haskell Programming from		Gumroad
Moronuki		first principles		
Miran Lipovača	2011	Learn You a Haskell for Great		http://learnyouahaskell.c

	Good	om
	0004.	UIII