

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Functional Programming

Lecturer(s) Unit
Coordinator: Viačeslav Pozdniakov

Other lecturers:

Department of Software Engineering
Faculty of Mathematics and Informatics
Vilnius University

Cycle Type of the course unit

1st (BA) Optional

Mode of delivery Semester or period when the course
unit is delivered

Language of instruction

Face-to-face 5 and 7 semester Lithuanian or English

Prerequisites
Prerequisites: Procedural Programming, Object Oriented Programming

Number of credits

allocated
Student‘s workload Contact hours Individual work

5 130 66 64

Purpose of the course unit: programme competences to be developed
Purpose of the course unit – provide functional programming basics, introduce modern functional programming
languages.

Generic competences:

• Communication and collaboration (GK1).
• Life-long learning (GK2).
• Social responsibility (GK3).

Specific competences:
• Knowledge and skills of underlying conceptual basis (SK4).
• Software development knowledge and skills (SK5).
• Technological and methodological knowledge and skills, professional competence (SK6).

Learning outcomes of the course unit:

students will be able to Teaching and learning methods Assessment
methods

Understand principles of functional
programming and recognize them as well.

Lectures, discussions, laboratory works, self-
dependent reading.

Written exam,
laboratory
works.

Write stateless (without any variables)
programs.
Get introduced to Category theory.
Investigate features of any other functional
programming languages.
Apply functional programming design
templates.

Course content: breakdown of the topics

Contact hours Individual work: time and
assignments

Le
ct

ur
es

Tu
to

ria
ls

Se

m
in

ar
s

Pr
ac

tic
e

La
bo

ra
to

ry
 w

or
k

(L
W

)

Tu
to

ri
al

 d
ur

in
g

LW

C
on

ta
ct

 h
ou

rs

In
di

vi
du

al
 w

or
k Assignments

Differences between procedure and function,
recursion

2 2

2

4 2

Self-dependent reading.
Laboratory work 1.

Lists, tuples, tail recursion 2 2 4 2
Higher order functions. Lazy evaluation 2 2 4 4
Haskell types, constructors, classes,
inheritance

4 4 8 6

Input/output in Haskell programs 2 2
2

4 4 Self-dependent reading.
Laboratory work 2 Monads (IO, MonadPlus, etc.) 4 4 8 4

Monad transformers 4 4 8 9
Testing 2 2

4

4 8
Self-dependent reading.

Laboratory work 3
Parser combinators 2 2 4 2
Concurrent programming 3 3 6 2
Software transactional memory 2 2 4 2
Functional pearls 3 3 6 2
Preparation for exam, exam itself 1 2 17 1 h for tutorial

1 h for exam
1 h for preparation

Total 32 1 32 8 66 64

Assessment strategy Weight

%
Deadline Assessment criteria

Exam 50% January All correctly answered exam tasks give 5 points.
A student can take part in the examination only if he/she
gets at least 1 point for laboratory works.

Laboratory work 1 20% Week 6 Correctly written program gives 2 points. One week
penalty after deadline – 0.2 points. Laboratory work 2 20% Week 12

Laboratory work 3 10% Week 16 Correctly written program gives 1 points. One week
penalty after deadline – 0.1 points.

Author Publis

hing
year

Title Number or
volume

Publisher or URL

Required reading
Bryan O’Sullivan, John
Goerzen, and Don
Stewart

2009 Real World Haskell O’Reilly

Recommended reading
Benjamin C. Pierce 1991 Basic Category Theory for

Computer Scientists

(Foundations of Computing)

 The MIT Press

Will Kurt

(2017) Get Programming with
Haskell

 Manning Publications

Christopher Allen, Julie
Moronuki

(2017) Haskell Programming from
first principles

 Gumroad

Miran Lipovača 2011 Learn You a Haskell for Great http://learnyouahaskell.c

Good! om

