

MODULE DESCRIPTION

Module title	Module code
Bioinformatics	

Lecturer(s)	Department where the module is delivered
Coordinator: dr. Laurynas Riauba	Department of Software Engineering
	Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module			
First	Optional			

Mode of delivery	Semester or period when the module is delivered	Language of instruction
Face-to-face	5^{th} and 7^{th} semester	Lithuanian

Prerequisites

Prerequisites: Algorithm theory, Algorithms and data structures, Procedural programming, Object oriented programming.

Number of credits allocated	Student's workload	Contact hours	Self-study hours
5	130	66	64

 Purpose of the module: programme competences to be developed

 Purpose of the module – knowledge transfer and achievement of capabilities in the fields of bioinformatics and biological data analysis

Generic competences:

- Communication and collaboration (*GK1*).
- Life-long learning (*GK2*).

Specific competences:

- Knowledge and skills of underlying conceptual basis (SK4).
- Software development knowledge and skills (SK5).
- Technological and methodological knowledge and skills, professional competence (SK6).

Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods
Have deeper knowledge about living nature, structure and processes of living organisms		Laboratory works
Use main biological databases and tools	Lectures with discussions, case analysis,	fulfillment, project
Understand the principles behind biological	individual reading, laboratory works, and	assignment fulfilment and
data search and analysis algorithms	project assignment.	presentation, examination
Choose tools and methods to solve regular		(in written form).
bioinformatical problems.		

	Contact hours					Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Self-study hours	Assignments
Introduction, basic knowledge about biological	6				2		8	8	
systems and processes.									
Biological data, databases, search algorithms					3		11	11	
Sequence analysis methods	10				3		13	13	
Origin of living organisms. Methods to investigate ancestry relationships between organisms					2	8	6	6	Individual reading.
Protein structures and methods of structure prediction					4		6	6	Laboratory works. Project assignment
Applications of bioinformatics	2				2		4	4	
Project assignments and presentations.					16		16	16	
Exam (in written form)							2		
Total	32				32	8	66	64	

Assessment strategy	Weig ht %	Deadline	Assessment criteria
2 laboratory works	20	During semester	Each tutorial assessed with max 10 points. Results of both tutorials are summed and divided by 10.
Project assignment	30	During semester	Project assignment is assessed according quality of project 2.4 points and presenting 0.6 points
Exam (in written form)	50	During exam session	Exam contains questions and tasks. Exam is assessed with max 10 points and multiplied by 0.5.

Author	Publis hing year	Title	Number volume	or	Publisher or URL
Required reading					
Marketa Zvelebil & Jeremy	2008	Understanding bioinformatics			Garland Science
O. Baum		_			
Recommended reading					
Neil C. Jones, Pavel A.	2004	An introduction to			The MIT Press
Pevzner		bioinformatics algorithms			
David W. Mount	2004	Bioinformatics			Cold Spring Harbor Laboratory
					Press