MODULE DESCRIPTION

Module title	Module code
Mathematics for Software Engineering III	

Lecturer(s)	Department where the module is delivered
Coordinator: assoc. prof. dr. Vilius Stakenas	Department of Mathematical Computer Science, Faculty of Mathematics and Informatics
Other lecturers:	Vilnius University

Cycle	Type of the module
First	Compulsory

Mode of delivery	Semester or period when the module is delivered	Language of instruction	
Face-to-face	$4^{\text {th }}$ semester	Lithuanian	
Prerequisites			
Prerequisites: Mathematics for Software Engineering I and II			

Number of credits allocated	Student‘s workload	Contact hours	Self-study hours
5	132	70	62

Purpose of the module: programme competences to be developed		
Purpose of the module - students should be acquainted with the basic knowledge necessary for quantitative analysis of random phenomena. They will learn how to choose a probabilistic model, raise questions of interest, compute and interpret numerical results, make statistical conclusions.		
Specific competences: Knowledge and skills of underlying conceptual basis (SC4). - Technological and methodological knowledge and skills, professional competence (SC6). Learning outcomes of the module: students will be able to	Teaching and learning methods	Assessment methods
Construct the probabilistic model of random phenomena (the probabilistic space): define the algebra of events, probability, compute the probability of events with complex structure, evaluate and interpret the results.		
Understand the concept of random variable, will be able to compute basic numerical characteristics, will be acquainted with the basic types of discrete and continuous random variables, will know how to use them for description of the real phenomena.	Lectures, demonstrations of properties and laws of random phenomena using computer programs, analysis of examples, solution of exercises, individual and group consultations, individual reading.	Written tests (open and close-ended questions).
Understand the statements of the limit theorems, the methods of proofs, will be able to apply them for approximate calculations.		
Formulate correctly the problems of estimating of statistical parameters, testing statistical hypothesis, use the statistical methods and computers to obtain the numerical results, and interpret the results.		

	Contact hours							Self-study work: time and assignments	
Content: breakdown of the topics	$\begin{aligned} & \text { U0 } \\ & \underline{U} \\ & 0 \\ & 0 \end{aligned}$		n \# ت in	$\begin{aligned} & \text { 烒 } \\ & \text { in } \\ & \hline \end{aligned}$	3 3 3 3 3 3 0 0 0 0 0 3	$\begin{aligned} & 3 \\ & 0 \\ & \text { a } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		n 0 0 0 0 0 0 0	Assignments
1. The discrete probabilistic space.	2			2			4	4	An individual set of exercises for work at the class and at home. Individual reading.
2. The algebra of events, axioms of probability theory and derived properties.	2			2			4		
3. Conditional probability and its properties. Independent events.	2			2			4	4	
4. Bernoulli trials. Binomial distribution. The Poisson and Moivre-Laplace theorems. Polynomial model.	4	2		4			10	4	
5. The discrete random variables: binomial, geometrical, hypergeometrical, Poissonian.	2			4			6	6	
6. Continuous random variables: uniform, exponential, normal. The Poisson process.	2			2			4	4	
7. Independent random variables and vectors.	2			2			4	2	
8. Numerical characteristics of the random variables: expectation, variance, moments.	4			6			10	6	
9. The limit theorems for independent random variables: the law of large numbers, the central limit theorem.	4	2		2			8	4	
10. The problems and concepts of statistics. The descriptive statistics.	2						2		
11. The estimators and confidence intervals for the statistical parameters.	2			2			4	2	
12. The problems of testing the statistical hypothesis.	4			4			8	8	
13. Preparation for the mid-term exam.								8	
14. Preparation for the final exam, exam							2	10	10 hours preparation, 2 hours exam
Total	32	4		32			70	62	132

Assessment strategy	Weig ht \%	Deadline	Assessment criteria
Work at the classes, solving homework assignments	50	During the semester	Solutions are estimated and credited with points. The accumulated grade is calculated according to the rule: $5 \times n u m b e r ~ o f ~ p o i n t s ~ a s s i g n e d / m a x i m a l ~ n u m b e r ~ o f ~ p o i n t s . ~$
Mid-term tests in theoretical questions	20	During the semester at a prescribed time at the end of 3 lectures	Answers to the test questions are credited with points. The accumulated grade is calculated according to the rule: $2 \times$ number of points assigned/maximal number of points.
The final exam	30	Exam session	(or 50)
Students can decide whether the grade accumulated for mid- term tests will be included into the final grade. If it is included, the weight of the exam question set is 30\%, if not - the weight is 50\%. The answers are credited with points. The grade is computed according to the rule: number of points assigned/maximal number of point of the question set.			

| Author | Publis
 hing
 year | Title | Number or
 volume | Publisher or URL |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Required reading | 2010 | Probability theory
 fundamentals (in Lithuanian) | | http://www.mif.vu.lt/katedros/
 matinf/asm/vs/pask/ttinf/tt_vad
 ovelis.pdf |
| V. Stakėnas | 2010 | Probability theory. Lectures
 slides (in Lithuanian) | http://www.mif.vu.lt/katedros/
 matinf/asm/vs/pask/ttinf/tttinf.h
 tm | |
| V. Stakėnas | 1996 | Probability theory and
 mathematical statistics (in
 Lithuanian) | http://www.mif.vu.lt/katedros/tt
 sk/bylos/ku/files/tms.html | |
| Recommended reading | 2001 | Statistics and its applications
 I (in Lithuanian) | Vilnius, TEV | |
| J. Kubilius | | | | |

