## COURSE UNIT DESCRIPTION

| Course unit title | Course unit code |
| :--- | :---: |
| Mathematics for Software Engineering II (Mathematical Analysis) |  |


| Lecturer(s) | Padalinys |
| :--- | :--- |
| Coordinator: prof. Gediminas Stepanauskas | Institute of Mathematics <br> Faculty of Mathematics and Informatics <br> Other lecturers: |


| Cycle | Type of the course unit |
| :---: | :---: |
| $1^{\text {st }}(\mathrm{BA})$ | Compulsory |


| Mode of delivery | Semester or period when the course <br> unit is delivered | Language of instruction |
| :---: | :---: | :---: |
| Face-to-face | 2 semester | Lithuanian |

## Prerequisites

Prerequisites: Mathematics for Software Engineering I.

| Number of credits <br> allocated | Student's workload | Contact hours | Individual work |
| :---: | :---: | :---: | :---: |
| 5 | 136 | 72 | 64 |

## Purpose of the course unit: programme competences to be developed

Purpose of the course unit - to provide the basic knowledge of the mathematical analysis which is necessary for software engineering studies and practice. To acquaint students with the real numbers, sets, limits of numbers' sequences, function limit and continuity, functions derivative, Taylor formula and expansions and their theory, the theory of the indefinite, definite and improper integrals. To acquire abstract thinking, an ability to understand abstract mathematical texts. To develop the ability to understand and to prove theorems and statements, interpret, paraphrase, to recognize patterns and laws, to compare them, to choose out the essential part of the whole, to classify them, to model situations and to analyze them, to formulate conclusions and base them, to choose appropriate solutions and to apply them. Students will be prepared to understand the mathematical language in other subjects studied by them.

Learning outcomes of the course unit: students will be able to

Be able to identify the mathematical problems, construct models using the features of the real numbers, the sets, limits of numbers' sequences and the series of numbers, the main characteristics of the functions, functions limits, function derivatives, integrals. Be able to solve problems of applying basic proof schemes of the mathematical analysis and methods of calculation (4.2).

Be able to think abstractly, to use the formal description techniques, to prove the correctness of propositions, to understand the nature and scope of the basic mathematical objects: the space of the real numbers and the limit of numbers' sequence, function limit, function derivative, integral. Students will be able to discuss the mathematical language (4.3).

Teaching and learning methods
Traditional lectures on the mathematical analysis. Practical training: solving problems that help to understand theory. Individual work: solving complimentary problems and studying the literature.

Assessment methods
Used cumulative assessment: work in classroom's practical trainings and individual work + mid test + final exam.

| Course content: breakdown of the topics | Contact hours |  |  |  |  |  |  | Individual work: time and assignments |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | U. <br> 0 <br> 0 <br> 0 |  |  |  |  | $\text { Tutorial during } L W$ | $\begin{aligned} & \text { n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{y y} \\ & 0 \\ & 0 \end{aligned}$ |  | Assignments |
| 1. Real numbers. Rational and irrational numbers. Understanding axiomatics of the real numbers. Bounds of sets. | 2 | 0 |  | 2 |  |  | 4 | 4 | Study [2] Ch. 1, solve homework problems [3] Ch. 1, [1] Ch. I, II.3, selectively read additional literature. |
| 2. Function. Limit and continuity. <br> Basic functions. Composite function. Sequences. Subsequences. Monotonic sequences. Limit of the sequence. Infinite limits. Unboundednesses. Number $e$. Partial limits of the sequence, upper and lower limits. Limit of function. Continuity of function. Points of discontinuities, their classification. Arithmetic operations with continuous functions. | 8 | 1 |  | 8 |  |  | 17 | 16 | Study [2] Ch. 2, 4, solve homework problems [3] Ch. 2, 3, [1] Ch. II.1, II.2, II.4, II.5, selectively read additional literature. |
| 3. Function derivative. Definition of the function derivative and its features. Geometric and physical interpretations of the function derivative. Differential and its geometrical interpretation. Derivatives of basic functions. Differentiation of the composite function. Mean value theorems. Higher order derivatives and differentials. Taylor's formula. Application of the Taylor formula in approximate calculation. Local extremes of the functions. Convexity of the functions. Asymptotes. Functions study using derivatives. | 10 | 1 |  | 10 |  |  | 21 | 20 | Study [2] Ch. 5, solve homework problems [1] Ch. III, selectively read additional literature. |
| 4. Series. Number series. Their convergence. Taylor's series. Necessary series convergence condition. Harmonic series. | 4 | 1 |  | 4 |  |  | 9 | 8 | Study [2] Ch.2; solve homework problems [3] Ch. 4, 5, selectively read additional literature. |
| 5. Integral. Indefinite integral. Integration by variable modification and integration by parts. Definite integral. Newton-Leibniz's formula. Improper integral, its integration. Common scheme of application of the definite integral. | 8 | 1 |  | 8 |  |  | 17 | 16 | Study [2] Ch. 4.9, 8.1; solve homework problems [1] Ch. VI, selectively read additional literature. |
| Mid test and final exam. |  |  |  |  |  |  | 4 |  |  |
| Total | 32 | 4 |  | 32 |  |  | 72 | 64 |  |


| Assessment strategy | Weig <br> ht \% | Deadline | Assessment criteria |
| :--- | :--- | :--- | :--- |
| General assessment strategy: The final mark (not exceeding 10) equals the sum of points (rounded to the nearest <br> integer) obtained in written exam, mid test, for work in classroom‘s practical trainings and individual work. |  |  |  |



|  |  |  | solution's steps, reasoning and justification are exhaustive. There are not calculation errors. |
| :---: | :---: | :---: | :---: |
| Final exam (written). | 45 | During exam session. | The final exam is written from the three subjects: <br> 4. Function derivative (the second part). <br> 5. Series; <br> 6. Integral. <br> The final exam consists of two parts: theoretical tasks and practical (computing) tasks. <br> The theoretical part consists of different complexity theoretical two tasks. The theoretical tasks tests students' ability to apply the acquired knowledge, the ability to divide a whole into its component parts (analysis) and tests the ability to combine individual elements into a whole, modelling, formulating hypotheses (synthesis), to state and to prove statements and theorems, to construct models and explain the concepts of the models, to investigate situations and to apply principles. Tasks are measured 1 and 2 points as follows: <br> 0 points: student does not know definitions or does not understand them, incorrectly formulates the main theorems and statements, improper uses of conventional symbols (designations) or does not understand them. <br> Up to $25 \%$ of the maximum assignment points: student knows definitions and understands them, knows some of the theorems and formulations of the statements, is trying to apply them, understands conventional symbols and uses them properly. <br> Up to $50 \%$ of the maximum assignment points: student knows definitions and understands them, knows theorems and statements, is able to explain formulations and solving strategies (steps) of the more complex theorems in his own words. <br> Up to $\mathbf{7 5 \%}$ of the maximum assignment points: student has the ability to prove theorems and statements, is able to interpret, to paraphrase, to recognize patterns and laws, and to compare them, is able to identify the fundamental part of the whole and to classify them. <br> Up to $\mathbf{1 0 0 \%}$ of the maximum assignment points: student is able to prove theorems and statements, is able to interpret, to paraphrase, to recognize patterns and laws, and to compare them, to choose out the essential part of the whole, to classify them, is able to model situations and to analyze them, is able to put forward hypotheses and to justify / deny. <br> Practical (computing) tasks consist of two tasks of similar complexity, which is requested to perform the calculations. Each task is evaluated by $\mathbf{1}$ point according the evaluation criteria of the mid test (practical part). |


| Author | Publis <br> hing <br> year | Title | Number or <br> volume | Publisher or URL |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Required reading | 2007 | Mǎematinės analizės <br> uždavinynas | 1 part | Vilniaus universiteto leidykla |
| [1] E. Misevičius <br> (vadovèlis ir uždavinynas) | 1983 | Matematinė analizė | 1 part | Mokslas, Vilnius |
| [2] V. Kabaila <br> (vadovèlis) | 1996 | Matematinės analizės pratybų <br> užduotys | Vilniaus universiteto leidykla, <br> Vilnius |  |
| [3] E. Misevičius, D. <br> Kamuntavičius, S. |  |  |  |  |


| Norvidas <br> (uždavinynas) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Recommended reading |  |  |  |  |
| G.Stepanauskas | 2014; <br> $2007 ;$ <br> $2012 ;$ <br> 2007 | Riba; Funkcijos išvestinė ir <br> jos taikymai; Eilutes; <br> Neapibrěžtinis ir apibrěžtinis <br> integralai, Paskaitu <br> konspektai. |  | mif.vu.lt/~stepanauskas |
| V. Pekarskas | 2006 | Trumpas matematikos kursas |  | Technologija, Kaunas |
| K. Kubilius, L. Saulis | 2000 | Matematinės analizės <br> uždavinynas | 1 part | TEV, Vilnius |

