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  1. Solve the system of equations 
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  2. Find all quadruplets  a, b, c, d of real numbers (a; b; c; d), which satisfy the system of equations 
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  3. A polynomial  f(x) of degree three is such that it has three different real zeros and the coefficient of 

 is positive. Show that 3x 0)()()( >′+′+′ cfbfaf  
 

  4. Find the real solutions of 16
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  5. The real numbers a, b, c are such that they all three are either greater or all are less than 1. Prove 

that )loglog(log4logloglog bacabcabc cabcabcba ++≥++ . 
 
  6. Find all quadruplets (x, y, z, t) of positive integers x, y, z, t such that  

)(32222 tzyxtzyx +++=+++  
 
  7. Let n be a positive integer and )1(...3221 +⋅++⋅+⋅= nnSn . Prove or disprove that there is 

always at least one perfect square between  and .  nS 1+nS
 
  8. Determine all positive integers n, which can be represented in the form ],[],[],[ accbban ++=  

where a, b, c are positive integers and [p, q] is the lowest common multiple of the integers p and q. 
 

  9. We will try to choose the positive integers m and n in such a way that the number 
m
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would be an integer. 
(i)    Select (at least) three such pairs (m, n) of positive integers m and n.            
(ii)   Find five such pairs (m, n) of a positive integers m and n; 
(iii)  Find seven such a pairs. 
(iiii) Are there an infinitely many such pairs of positive integers? 

 



10. (A) Determine a natural number n such that n > 2 and the sum of squares of some n consecutive 
positive integers is a perfect square; 
(B)  Find at least 2 such natural numbers n;   
(C)  Is it possible to find 3 such positive integers n? 

 
11. M is a finite set of points in a plane. Point O in the plane is called  an “almost centre of symmetry” 

of set M, if it is possible to remove from M one point in such a way that among the remaining points 
O is the centre of symmetry in the usual sense. 

 (i)   Find such an M, possessing such an  almost centre of symmetry ; 
(ii)  Find such an  M, possessing two almost centres of symmetry; 
(iii) How many such almost centres of symmetry may a finite point set in the plane have? 

 
12. For each sequence }...,,,{ 21 naaaS =  of non-negative integers let the offspring of S be the 

sequence , where  is a number of integers in S to the right of ,  
that are less than . For example, if 

}...,,,{ 21 nbbbT = ib ia

ia }5,7,7,0,4,2,2,7,5,0,8,1,6{=S , then 
. For a given sequence , let  be the offspring of ,  

the offspring of  and so on. Is there always an integer j such that 
}0,1,1,0,1,1,1,5,4,0,10,2,8{=T 0S 1S 0S 2S

1S 1+= jj SS ? 
13. A circle is divided into 2n congruent sectors, n of them coloured black and remaining n sectors 

coloured white. The white sectors are numbered clockwise from 1 to n, starting anywhere. 
Afterwards, the black sectors are numbered counter-clockwise from 1 to n, again starting anywhere.   

 Prove that there exist n consequent sectors having all the numbers from 1 to n. 
 
14. Let , , ...,  be an arbitrary arrangement of numbers 1, 2, ..., n on a circle. Find 
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possible arrangements of 1, 2, ..., n. 
 
15. Find the smallest possibl  it is possible to cover an  chessboard using the  nn×

same number of tiles    so that no two tiles overlap. 
 
16. ABCD is a convex quadr

diagonals. The broken li
areas of these parts.  

 
17. Two touching circles S a

diameter of S and let the 
 
18.  Consider triangles whose

(i)  the square of the circ
(ii) the square of the inra

 
19. Let , ,  be the

Let R be its circumradius
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20. Let ABCD be a convex q
intersections of the circu
and S be the intersect
respectively. Prove that M

 
 
 
 
 
 

e integer n for which
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ilateral inscribed in a circle with centre O, and with mutually perpendicular 
ne AOC divides the quadrilateral into two parts. Find the possible ratio of 

nd T share a common tangent which meets S at A and T at B. Let AP be a 
tangent from P to T touch it at Q. Show that AP = PQ.  

 each side length squared is a rational number. Is it true that  
umradius of every such triangle is rational? 
dius of every such triangle is rational? 

 lengths of internal angle bisectors of a triangle ABC with the sides a, b, c. 

. Prove that R
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uadrilateral. Let O be the intersection of AC and BD. Let O and M be the 
mcircle of triangle OAD with the circumcircle of the triangle OBC. Let T 
ions of OM with circumcircles of triangles OAB and triangle OCD 

 is the midpoint of TS. 


