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Abstract

In this paper we consider the unit root problem for one rather simple autoregressive model Yt,s=aY t−1,s+
bY t,s−1+εt,s on a two-dimensional lattice. We show that the growth of variance of Yt,s is essentially different
from corresponding growth in the unit root case for AR(1) or AR(2) time series models. We also show that
the dimension of the lattice plays an important role: the growth of variance of autoregressive field on a
d-dimensional lattice is different for d = 2, 3 and d �4.
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1. Introduction

The most simple autoregressive model can be formulated as follows. We say that a real-valued
process {Xt, t ∈ Z} follows an autoregressive model of order p, 1�p�∞ (and denote it by
AR(p)), if

Xt =
p∑

k=1

akXt−k + εt , (1)

where ak, k�1, are nonrandom coefficients, and {εt , t ∈ Z} is a sequence of independent
identically distributed (i.i.d.) random variables. Such and more general models with different
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assumptions on innovations εt are deeply investigated and generalized to the multidimensional
setting (Xt ∈ Rd , and ak are d × d matrices) and even to the case of Banach-valued random
elements Xt with ak being linear bounded (or compact) operators (see, for example, [7] and
references therein).

A different direction of generalization is obtained when, instead of the one-dimensional pa-
rameter t, we consider a multidimensional index t̄ . One can consider a real-valued random field
Yt̄ with t̄ ∈ Zd satisfying the relation

Yt̄ =
∑
k̄∈�

ak̄Yt̄−k̄ + εt̄ , (2)

where t̄ = (t1, . . . , td ), k̄ = (k1, . . . , kd), t̄ − k̄ = (ti − ki, i = 1, . . . , d), and � is some subset
of Zd \ {0̄}. It seems that, in the literature, the most commonly used name for such fields is spatial
autoregressive process (see, for example, [1] and references therein). By analogy with the standard
notation in time series AR(p) or ARMA(p, q) we denote such a process by SAR(d, �) showing two
main parameters d and �. While in time series there is the natural notion of “past” and “future”, we
must admit that, in the case of multidimensional index, there is no such natural notion. Therefore,
it is not easy to say which sets � could be considered as natural. One possible way is to consider
the requirement � ⊂ (Z+)d \ {0̄} which leads to the quarter-plane autoregressive models. For
example, the sets

�p =
{

b̄ ∈ Zd , bi �0, i = 1, . . . , d, 0 <

d∑
i=1

bi �p

}

satisfy this condition. Another class of examples of SAR processes are nonsymmetric half-plane
models, in which the set � is defined in a more complicated way. Mathematical theory of these
processes is very well developed (see, for example, [9,11,12], and references there). Here it is
relevant to note that a major part of research on SAR models is devoted to the case d = 2, mainly
due to the fact that most applications (image recognition, segmentation and restoration, texture
models, etc.) deal with models on a two-dimensional lattice. One can also mention the time–space
autoregression models that can be formally considered as SAR models, but they are specific in
the sense that one coordinate of indices is separated and denotes time, while the others are used
to index variables in “space” (or in fixed locations; in this case the term “panel data” is used).
In such models one usually uses a lag in time and lag in space, which is generally defined by
the so-called weight matrix (see [8] or recent paper [10], where such models are discussed). It is
also necessary to mention the important class of the conditional and intrinsic autoregressions (see
[3,4,13], and references there), but since it seems that there is no direct relation of these papers
with the topic of our note, we do not introduce these notions.

There is an enormous literature devoted to SAR processes, mainly in statistics and engineer-
ing. The problems considered for SAR processes are the same as those in time series: the ex-
istence of stationary solutions, fitting the data to the model, estimation of parameters of the
model, etc. However, as noted in one of the first papers on autoregressive models with a two-
dimensional lattice [17], there are some new effects and complications absent in time-series
analysis.

In this note, we consider a rather specific problem which demonstrates such a new effect. We
take a simple spatial model with a “unit root” and consider the growth of the variance of the
autoregressive process, which satisfies the model under consideration. By unit roots for model (2)
we mean values of the parameters ak̄ for which there are no stationary solutions. We start with
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Fig. 1. Unit roots.

the simple model SAR(2, �1), that is (for simplicity we write a = a10, b = a01),

Yt,s = aYt−1,s + bYt,s−1 + εt,s . (3)

The model

Yt,s = aYt−1,s + bYt,s−1 − abYt−1,s−1 + εt,s (4)

can be considered as being more simple one, see the recent papers [5,6] and references therein.
The reason is that this model can be reduced to two “one-dimensional” autoregressions. Note that,
for model (4) written in the form p(L1, L2)Yt,s = εt,s , where L1 and L2 are lag operators (defined
by the relations L1Xt,s = Xt−1,s , L2Xt,s = Xt,s−1), polynomial p(z1, z2) can be factorized in
the form

p(z1, z2) = 1 − az1 − bz2 + abz1z2 = (1 − az1)(1 − bz2).

Therefore, in the case of a unit root a = b = 1, the problem of growth of the variance of Ys,t

is trivial, since (with appropriate boundary conditions) Ys,t = ∑t,s
i,j=1 εi,j , see [6]. A similar

situation is in the case of a unit root in one direction (a = 1, |b| < 1 or |a| < 1, b = 1).
In this paper we always assume that εt,s , (t, s) ∈ Z2 are i.i.d. random variables with Eε1,1 =

0, Eε2
1,1 = 1. The same assumption will be assumed for innovations with indices in Z, Z3

and Z4.
As boundary conditions for model (3), we assume that we have fixed values of Yi,j with

i + j = 0. In the two-dimensional setting, there are much more possibilities to set boundary
conditions (see [16]) but, for the purposes of this note, boundary conditions are not important.
For us, it is important that, in model (3), we can express all values Yt,s with t + s > 0 recursively
by a finite number of these fixed values and values of εn,m.

It is known (see [15]) that, for model (3), a stationary solution exists in three regions of (a, b)-
plane: {|a| + |b| < 1}, {|a| + 1 < |b|}, {1 + |b| < |a|} (see Fig. 1).

Four strips (shaded with boundary lines included) between these three regions present the unit
roots of model (3). They are obtained in the following way. Take a polynomial �(z1, . . . , zd) of
complex variables z1, . . . , zd . Using the lag operators L1, . . . , Ld the general SAR model can be
written as

�(L1, . . . , Ld)Yk̄ = εk̄,
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and the existence of a stationary solution depends on the zeros of the polynomial �(z1, . . . , zd).
If d = 2, it is known (see [17,15]) that a necessary and sufficient condition for this general
model to have a stationary solution is that �(z1, z2) is not zero on the set {|z1| = 1, |z2| = 1}
(the boundary of the unit polydisc). In the particular case of model (3) with the polynomial
�(z1, z2) = 1 − az1 − bz2, the shaded area presents points where this polynomial has zeros on
the boundary of the unit polydisc.

At the end of Introduction, we recall some properties of a stationary solution of (3). In the first
region {|a| + |b| < 1}, the stationary solution can be written in the form

Yt,s =
∞∑

k=0

k∑
j=0

(
k

j

)
ajbk−j εt−j,s−k+j .

Using the notation

c(i, j) := c(i, j ; a, b) =
(

j

i

)
aibj−i ,

we have

Var Yt,s =
∞∑

k=0

k∑
j=0

c(j, k)2.

Denote K = |a| + |b|. It is easy to show that Var Yt,s �(1 − K2)−1.
In the case of the second region (let us take a > 0, b > 1 + a), rewrite (3) in the form

Yt,s−1 = ãYt−1,s + b̃Yt,s + ε̃t,s−1 (5)

with ã = −ab−1, b̃ = b−1, and ε̃t,s−1 = −b−1εt,s . Now |ã|+ |b̃| = (1+a)b−1 < 1; therefore,
by a standard argument we have the stationary solution

Yt,s−1 =
∞∑

k=0

k∑
j=0

(
k

j

)
ãj b̃k−j ε̃t−j,s+k−1

= −
∞∑

k=0

1

bk+1

k∑
j=0

(
k

j

)
(−a)j εt−j,s+k. (6)

It is easy to see that (6) satisfies (3), so formally it seems that there is no difference between (3)
and (5), since both have the same stationary solution (6). However, if we consider the boundary
conditions and the mechanism how the values of the process Yt,s are generated, models (3) and (5)
differ. LetF(·) denote the �-algebra generated by random variables in the parenthesis and if X is a
random variable, thenX ∼ F means that X as a function is measurable with respect to the�-algebra
F . For model (3) (in the case |a|+ |b| < 1), a stationary solution Yt,s ∼ F(εi,j , i� t, j �s), and
a natural boundary set is any line i + j = c, c ∈ Z. For example, having values Yi,j for all i, j

satisfying i + j = 0, we can generate all values Yt,s with (t, s) ∈ {(t, s) ∈ Z2 : t + s > 0}. For
model (5) (the case 1 + |a| < |b|), a stationary solution Yt,s ∼ F(εi,j , i� t, i + j � t + s + 1),
and, as a boundary condition, we can take values Yi,j on any line j = n and then get all values
of Yt,s with s < n. So the mechanism of autoregression is important, and it is easy to see that if,
in (3) with a > 0, b > 1 + a, we start to generate Yt,s from Yi,j = 0, i + j = 0, we get non



Aut
ho

r's
   

pe
rs

on
al

   
co

py

V. Paulauskas / Journal of Multivariate Analysis 98 (2007) 209 –226 213

stationary process Yt,s, since the variance EY 2
t,s grows as t + s increases. Similarly, in the case

of the third region, we can rewrite (3) in the form

Yt−1,s = ãYt,s + b̃Yt,s−1 + ε̃t−1,s (7)

with ã = a−1, b̃ = −ba−1, and ε̃t−1,s = −a−1εt,s . Again |ã| + |b̃| < 1, and we have the
stationary solution

Yt−1,s =
∞∑

k=0

1

ak+1

k∑
j=0

(
k

j

)
(−1)j bk−j εt+k,s−k+j .

In this case, Yt,s ∼ F(εi,j , j �s, i + j � t + s + 1) and, as a boundary condition, we can take
values Yi,j on any line i = n and get all values of Yt,s with t < n.

Therefore, it is possible to consider (5) and (7) as modifications of model (3), convenient for
different values of parameters a, b, but it is also possible to consider all three models as separate,
taking into account the mechanism under which the value of Yt,s at point (t, s) is obtained from
neighboring two points. In (3), we take two neighboring points (t − 1, s) and (t, s − 1), while,
in model (5), we take points (t − 1, s + 1) and (t, s + 1) and, in (7), the points (t + 1, s) and
(t + 1, s − 1). If we do not require that � ⊂ (Z+)2 \ {0̄}, then it is clear that, for each point
(t, s), we have eight neighboring points and if, in the generating mechanism, we include only two
neighboring points, then there are

(8
2

) = 28 different models. Clearly, they are not all of the same
interest. For example, if we take (t − 1, s) and (t + 1, s) as neighbors for a point (t, s), then the
model

Yt,s = aYt−1,s + bYt+1,s + εt,s

can be regarded as a sequence (with respect to s) of models indexed only by t. In [17], such models
in time series were called bilateral, in contrast to unilateral time series models when the value of
a process at point t is obtained from values of the process on one side of t. Such a model can also
be considered as a panel model: t stands for time and s denotes the panel number.

The paper is organized as follows: in the next two sections we formulate our main results and
the last section is devoted to proofs.

2. Main result in case d = 2

We return to the case of unit roots in model (3). If we take a point in the interior of the shaded
strips (see Fig. 1), it is not difficult to see that the variance of a solution of (3) grows exponentially.
Therefore, interesting cases of unit roots for this model are four lines a + b = 1, a + b = −1,
a − b = 1, b − a = 1, which form the boundary between the “stationary region” and the region
of exponential growth. At the points of intersection of these lines we have a unit root for AR(1)

model, therefore, the variance of the solution (which is simply a random walk) grows linearly.
Let us take model (3) with |a| + |b| = 1 and, to be specific, let us assume that a > 0, b > 0,
a + b = 1. Also assume that Yi,j = 0 for i + j = 0 (if we take different boundary conditions,
the main picture of the growth of Var Yt,s will remain the same). Then

Yt,s =
t+s−1∑
k=0

k∑
j=0

(
k

j

)
ajbk−j εt−j,s−k+j



Aut
ho

r's
   

pe
rs

on
al

   
co

py

214 V. Paulauskas / Journal of Multivariate Analysis 98 (2007) 209 –226

and

Var Yt,s =
t+s−1∑
k=0

k∑
j=0

c(j, k)2. (8)

In order to investigate the growth of Var Yt,s as m = t + s tends to infinity, we need to find the
asymptotic behavior (as m → ∞) of a function

fm(x) =
m∑

k=0

gk(x), 0�x�1,

where gk(x) = ∑k
j=0 ak,j (x), ak,j (x) = (

k
j

)2
x2j (1 − x)2(k−j), and x = a. Note that fm(0) =

fm(1) = m. Using simple combinatorics (identity (32) and the Stirling formula), we get gk(1/2) ∼
(�k)−1/2 for large k, hence, fm(1/2) � √

m for large m. Here an ∼ bn means, as usual, that
lim anb

−1
n = 1 and am � bm means that C1bm �am �C2bm for sufficiently large m with positive

constants Ci, i = 1, 2, independent of m.
One can expect that the same behavior of the function fm will be for all fixed x separated from

0 and 1, and only if we let x vary with m (e.g., if we consider a sequence of models), that is,
x = x(m) and x → 0 or x → 1 as m → ∞, we must get some intermediate growth between√

m and m. This turns out to be the case, and we prove the following statement.

Theorem 1. Suppose that 0 < c1 < 1/2 < c2 < 1 are some fixed constants. Then we have

fm(x) �

⎧⎪⎪⎨
⎪⎪⎩

√
m for c1 < x < c2,

m(1+�)/2 for x = m−� or x = 1 − m−�, � ∈ (0, 1),

m for 0�x�m−1 or 1 − m−1 �x�1.

(9)

The theorem gives us a complete picture of how Var Yt,s grows on the set {(a, b) : |a|+|b| = 1},
that is, on the unit sphere in l1-norm on (a, b)-plane. We formulate this behavior as a corollary.

Corollary 2. For model (3) with |a|+|b| = 1 and boundary conditions Yi,j = 0 for all i +j = 0
and for large m = t + s, we have

Var Yt,s �

⎧⎪⎪⎨
⎪⎪⎩

√
t + s for c1 < |a| < c2,

(t + s)(1+�)/2 for |a| = m−� or |a| = 1 − m−�,

t + s for |a|�m−1 or 1 − m−1 � |a|�1.

(10)

Here 0 < c1 < c2 < 1 are fixed constants.

From Theorem 1 we can derive the following result on the half-line a�0, b�1, 1 + a = b,
extending the line on the unit l1-sphere to the plane (on the other half-lines, the situation is the
same).
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Corollary 3. Let a�0, b�1, and 1 + a = b. Let us consider (3) rewritten in the form (5) with
boundary conditions Yin = 0 for all i. Then, for s < n and n − s large,

Var Yt,s �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n − s for 0�a�(n − s)−1,

(n − s)(1+�)/2 for a = (n − s)−�, 0 < � < 1,
√

n − s for c3 < a < c4,

(n − s)(1−3�)/2 for a = (n − s)�, � > 0.

(11)

Here c3 and c4 are some fixed, respectively, small and large constants. Comparing (11) with
(10), we see a new effect: if a (and, at the same time, b) becomes large (� > 1/3), then the
variance of Yt,s does not grow but tends to zero. This can be explained by the fact that, in (5),
b̃ → 0 as b → ∞, so the model becomes close to AR(1) but, at the same time, the innovations
ε̃t,s tend to zero, therefore, the variability of Yt,s becomes smaller and smaller. This effect can
be seen in the AR(1) model Xt = aXt−1 + εt , t ∈ Z, with |a| > 1 and noncausal solution
Xt = −∑∞

k=0 a−(k+1)εt+k+1 as a → ∞. Another message sent by relations (11) and (10) is
the following fact. While in the case of unit root for time series Xt, t = 0, 1, 2, . . . we have
one direction and the unit root case differs from the stationary one by the growth of Var Xt, in
the case of the two-dimensional index together with the growth of Var Yt,s the “direction” also is
important, that is, how the point (t, s) moves to ∞ on plane. From (10) we see that if, in (t, s)

plane, we go from (0, 0) by any direction in the first quadrant, the variance of Yt,s grows, and
the most rapid growth is along the line t = s, while (11) shows quite different growth of the
variance of Yt,s , that is, the variance grows as s decreases, starting from n, and does not depend on
t. It is easy to see that this direction of maximal growth is perpendicular to the line of boundary
conditions or, in other words, depends on the mechanism of generating the value Yt,s from two
neighboring points. It is not difficult to provide eight examples of models written in the form

Yt,s = aYt+i,s+j + bYt+k,s+l + εt,s , a + b = 1, a > 0, b > 0

with appropriate combinations of values i, j, k, l from the set {0, ±1} and appropriate boundary
conditions. This will give eight different directions of maximal growth of Var Yt,s : four directions
go along the coordinate axis, and the remaining four can be obtained by rotating the axis by �/4;
the “typical” two-dimensional (that is, a is not close to 0 or 1) growth rates will be the following
eight functions:

√
t + s,

√
t,

√
s,

√
n − t,

√
n − s,

√
2n − (t + s),

√
n + s − t,

√
n + t − s.

Last five of these functions contain n, since in five models initial conditions are defined on
lines, depending on n (chosen in a such way, that it would be possible to generate values of the
Xt,s on square [1, n] × [1, n]). For example, in Corollary 3 we have initial conditions on line
((i, j) : j = n) and the function of the maximal growth is

√
n − s. Taking into account that the

rate of growth also changes if the parameters a, b are close to degenerate values (a = 0 or a = 1,

one-dimensional unit root), we see that the unit root case in autoregression on two-dimensional
lattice is much more complicated, in comparison with the unit root case for AR(1) model for time
series. Despite of this, we still hope that the information obtained in the theorem and corollaries
will help to construct some test to identify a unit root, similar to the well-known Dickey–Fuller



Aut
ho

r's
   

pe
rs

on
al

   
co

py

216 V. Paulauskas / Journal of Multivariate Analysis 98 (2007) 209 –226

test for detecting a unit root in AR(1) model. We intend to investigate this problem in the nearest
future. 1

One can suspect that such a big difference in the behavior of the variance of an autoregressive
processes is for the reason that we compare the unit root case for model (3) which has two
parameters a, b with AR(1) model Xt = aXt−1 + εt having only one parameter a. Therefore, it
seems more natural to compare (3) with the AR(2) model

Xt = aXt−1 + bXt−2 + εt . (12)

It turns out that essential is the dimension of indices but not the number of parameters of a model,
since the following result holds.

Proposition 4. For model (12) with a + b = 1, a > 0, b > 0 and initial conditions X−1 =
X−2 = 0, we have

1 + C2∗ t �Var Xt �1 + (C∗)2t, (13)

where C∗ = a and C∗ = a2 − a + 1.

In a recent paper [14] the growth of the variances of more general processes defined by the
equation

�Xt = ut

is considered. Here �Xt = Xt − Xt−1 and {ut } is zero-mean weakly stationary process. We
included our result, since we give the dependence of the asymptotic of Var Xt on a parameter a.

3. The case of higher dimensions

Now we investigate SAR processes in higher dimensions and we show that the growth of the
variance of a SAR process in the case of unit root changes rapidly with increasing dimensionality
of index. Let us consider the SAR(3, �1) model

Yt,s,v = aYt−1,s,v + bYt,s−1,v + cYt,s,v−1 + εt,s,v. (14)

It is possible to show that unit roots for this model are in the set of points in the (a, b, c)-space
described by the inequalities

||b| − |1 + c||� |a|� |b| + |1 + c|, ||c| − |1 + b||� |a|� |c| + |1 + b|,
||a| − |1 + c||� |b|� |a| + |1 + c|, ||c| − |1 + a||� |b|� |c| + |1 + a|,
||a| − |1 + b||� |c|� |a| + |1 + b|, ||b| − |1 + a||� |c|� |b| + |1 + a|.

Again, as in the case d = 2, we take only the part of the boundary of this set, precisely, we
consider model (14) with a + b + c = 1, a�0, b�0, c�0, and boundary conditions Yt,s,v = 0
for t + s + v = 0. If one coefficient is equal to zero, we get the just investigated case of
SAR(2, �1); if two of them vanish, we have AR(1), so it is necessary to investigate the case where
all three parameters a, b, c are separated from 0 and 1. Since now combinatorics becomes more
complicated (instead of binomial coefficients now we must deal with multinomial coefficients),

1 During the second revision the author got a preprint [2], where asymptotic normality is proved for LSE of a and b in
the unit root case, but the limit normal law is degenerate.
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we provide only a particular result from which we have a general picture about the growth of the
variance of the process (14).

Proposition 5. For model (14) with a = b = c = 1/3 and boundary conditions Yt,s,v = 0 for
t + s + v = 0, we have

Var Yt,s,v � log(t + s + v). (15)

This result shows that, for a simple model on three-dimensional lattice, the growth of the
variance of the process on the boundary of the set of unit root points can vary from linear to
logarithmic. Therefore, it is rather natural to expect that, in the case d = 4, on the boundary of
the set of unit root points there will be a region of parameters such that variance of the process
will be bounded.

Proposition 6. Let us consider the model

Yt,s,v,u = aYt−1,s,v,u + bYt,s−1,v,u + cYt,s,v−1,u + eYt,s,v,u−1 + εt,s,v,u (16)

with a = b = c = e = 1/4 and boundary conditions Yt,s,v,u = 0 for t + s + v + u = 0. There
exists an absolute constant C such that, for all t, s, v, u, t + s + v + u > 0, we have

Var Yt,s,v,u �C.

This proposition leads to an interesting observation. If we consider the set {a + b + c + d =
1, 0 < c1 �a, b, c, d �c2 < 1} in the space of parameters (a, b, c, d), it is not difficult to see that
the behavior of Var Yt,s,v,u will be the same, i.e., it will be bounded. This means that the series

Yt,s,u,v =
∞∑

n=0

∑
i,j,k �0

0� i+j+k �n

c1(n, i, j, k)aibj ckdn−i−j−kεt−i,s−j,u−k,v−n+i+j+k,

where

c1(n, i, j, k) = n!
i!j !k!(n − i − j − k)! , (17)

converges a.s., since ε’s are independent and the corresponding series of variances is convergent.
Thus, we have some region in the space of parameters, in which, on one hand, the polynomial
1 − az1 − bz2 − cz3 − ez4 has roots on the boundary of unit polydisc and, on the other hand, for
the same values of parameters model (16) has a stationary solution. This shows that, starting with
dimension 4, the condition that the polynomial �(z1, . . . , zd) vanishes on the boundary of the
unit polydisc in Cd is not sufficient for the unit root, i.e., nonexistence of a stationary solution.

4. Proofs

Before starting the proof of Theorem 1 we shall make one comment. For analysis of the growth
of Var Yt,s , we use a direct approach, precisely, formula (8). As noted by the anonymous referee,
another approach to analyze Var Yt,s would be via spectral density. It is easy to see that, for model
(3) (with a > 0, b > 0, a + b = 1), the spectral density is

f (�1, �2) = 4
(
a sin2(�1/2) + b sin2(�2/2) − ab sin2((�1 − �2)/2)

)−1
. (18)
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In papers [13,4], there were considered intrinsic autoregressions with spectral density having
radial behavior (it grows as negative power of ||�|| := (�2

1 + �2
2)

1/2 at the origin). Such an
assumption allowed one to investigate the growth of variance. Unfortunately, the behavior of
density (18) at the origin is more complicated, and (at least for the author) it is not clear how to
get results formulated in Theorem 1 using the spectral density approach.

Proof of Theorem 1. Note that, since gk(x) = gk(1 − x), it is sufficient to consider the interval
0�x�1/2. Consider ank(x) for sufficiently large n and k. Applying the Stirling formula, we have

ank(x) = n

2�k(n − k)

(
n

n − k

)2n (
n − k

k

)2k

x2k(1 − x)2(n−k)(1 + o(1)). (19)

Let us take k = xn + zn� (strictly speaking, we must consider k̃ = [xn + zn�], where [a] stands
for the integer part of a number a but, since we consider large k, the difference k − k̃ can be
neglected). We shall choose parameters |z| < 1 and 0 < � < 1 so that k ∈ (1, n) will be large.
Also, instead of writing 1 + o(1), sometimes we will use the symbol ∼. Then from (19) we have

ank(x) ∼ 1

2�nanbn

(
1 + z

n1−�an

)2nan
(

1 − z

n1−�bn

)2nbn

, (20)

where

an = 1 − x − z

n1−�
, bn = x + z

n1−�
.

Consider separately

Un =
(

1 + z

n1−�an

)2nan
(

1 − z

n1−�bn

)2nbn

.

Suppose that all parameters x, z, �, n are such that∣∣∣∣ z

n1−�an

∣∣∣∣ < ε,

∣∣∣∣ z

n1−�bn

∣∣∣∣ < ε (21)

for some small ε > 0. Then

ln Un = 2nan ln

(
1 + z

n1−�an

)
+ 2nbn ln

(
1 − z

n1−�bn

)

= 2nan

(
z

n1−�an

− 1

2

(
z

n1−�an

)2

(1 + o(1))

)

+2nbn

(
− z

n1−�bn

− 1

2

(
z

n1−�bn

)2

(1 + o(1))

)

= −
(

z2

n1−2�an

+ z2

n1−2�bn

)
(1 + o(1)).
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Since an + bn = 1, we have

Un = exp

{
− z2

n1−2�

(
1

an

+ 1

bn

)
(1 + o(1))

}

= exp

{
−z2(1 + o(1))

n1−2�anbn

}
. (22)

We first consider bounds from below. Let us take 0 < c1 < x < 1/2. Then 1/3 < an < 1 and
c1/2 < bn < 1 for sufficiently large n, therefore, (21) is satisfied, and we have

ank(x)� C

nanbn

Un = C

nanbn

exp

{
−z2(1 + o(1))

n1−2�anbn

}
�Cn−1 (23)

for all ��1/2. Thus, for all k ∈ [xn − √
n, xn + √

n], we have ank(x)�Cn−1, therefore, for
0 < c1 < x < 1/2,

gn(x)�Cn−1/2 and fm(x)�C
√

m.

Now let us consider x = n−�, 0 < ��1. We take 0 < z < 1 and choose � < 1 − �. Again an is
separated from 0 but bn = n−� + zn�−1, therefore, n−� �bn �2n−�. (21) is satisfied and, instead
of (23), we have

ank(x)� C

nanbn

exp

{
−z2(1 + ε)n2�

nanbn

}
.

The function

h(y) = 1

y
exp

{
− �

y

}

has a maximum at y = �, h(�) = (e�)−1, h′(y) > 0 for 0 < y < �, and h′(y) < 0 for y > �.
Then h(y) ∼ y−1 as y → ∞ and h(y) exponentially decreases to zero as y → 0. In our case,
� = Cn2� and y = nanbn, so C1n

1−� < y < C2n
1−�. If we choose � = (1 − �)/2, then, for all

k ∈ [n1−�, n1−� + n(1−�)/2], we get

ank(x)�Cn−(1−�).

Hence, gn(n
−�)�Cn�n−(1−�) = Cn−(1−�)/2. Trying to bound gn(x), we took x = n−�, while

we need to estimate fm(x) at x = m−�. This was done taking into account that the value k = nx

maximizes the value of ank(x) over all 1�k�n. On the other hand, due to the trivial bound

fm(x)�
m∑

n=m/2

gn(x),

for us it is sufficient to consider only m/2�n�m. Therefore, it is easy to see that all bounds
remain valid (up to constants) for x = m−� and, thus, we get

fm(m−�)�Cm(1+�)/2.

Clearly, if x = m−� with � > 1, then gn(m
−�)�(1 − m−�)2n �C for m/2�n�m, therefore,

fm(x)�Cm.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

220 V. Paulauskas / Journal of Multivariate Analysis 98 (2007) 209 –226

So we have proved the bounds from below. Now we shall show that the same rate can be
obtained bounding the function fm from above. Since, for all 0�x�1,

gn(x) =
n∑

k=0

an,k(x)�
(

n∑
k=0

(
n

k

)
xk(1 − x)(n−k)

)2

= 1, (24)

we have

fm(x)�Cm.

Now consider 0 < c1 < x < 1/2. It is easy to verify that, for all k ∈ I (x, n) := [xn−√
n, xn+√

n], we have ank(x)�Cn−1, therefore,∑
k∈I (x,n)

ank(x)�Cn−1/2.

If k /∈ I (x, n), then k = xn + zn� with z = ±1 and � > 1/2. Condition (21) is satisfied, and
now we have

Un � exp

{
− C

n1−2�anbn

}
.

Since 1 − 2� < 0, we get that Un exponentially decreases, therefore, the sum
∑

k /∈I (x,n) ank(x)

is negligible comparing with the sum over I (x, n), hence, gn(x)�Cn−1/2 and

fm(x)�C
√

m.

It remains the case x = m−�, and now we cannot substitute m by n, since we need to bound from
above the total sum

∑m
n=0 gn(x). Therefore, we divide this sum into three parts

fm(x) = fm1(x) + fm2(x) + fm3(x),

where

fm1(x) =
[m	]∑
n=0

gn(x), fm2(x) =
[m/2]∑

n=[m	]+1

gn(x), fm3(x) =
m∑

n=[m/2]+1

gn(x),

and 	 = (1 + �)/2. In the first sum, using trivial bound (24), we have

fm1(x)�m	. (25)

In the third sum, as in bounds from below, we can take x = n−�. Then it is not difficult to verify
that, for all k ∈ I1(x, n) := [n1−�, n1−� + n(1−�)/2],

ank(x)�Cn−(1−�) and
∑

k∈I1(x,n)

ank(x)�Cn−(1−�)/2. (26)

As above, one can show that, for all k outside the interval I1(x, n), the term ank(x) decreases
exponentially with respect to n, therefore, the main term in the estimate of gn(x) is obtained from
the bound (26). Namely, if k /∈ I1(x, n), then k = xn+zn� with z = ±1 and 1−� > � > (1−�)/2,
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and with z = 1 if 1 − � < � < 1. If 1 − � > � > (1 − �)/2, then (21) is satisfied. Then the
exponential rate easily follows from the bound

ank(x)� C

nanbn

exp

{
− Cn2�

nanbn

}
,

since 2� > 1 − �.
In the case 1 − � < � < 1, condition (21) is not satisfied (at least, ε cannot be taken small),

but then returning to formula (20) and directly estimating, one can show the exponential decay
again. Thus, we get

fm3(m
−�)�Cm	. (27)

It remains to estimate fm2(x) for x = m−�, 0 < � < 1. If we take x = m−� and k = nx,
then it is easy to see that, for such k, we have ank(x) � n−1m�. Again we look for � such that the
terms ank(x) will be of the same order for all k = nx + zn�, |z| < 1. We have (20) with

an = 1 − x − z

n1−�
, bn = x + z

n1−�
.

Let us remind that now we consider the values of n that are of order m
 with (1 + �)/2�
�1.

For such values of n, the prevailing term in bn will be x = m−� if � < (1 − �)(1 + �)−1. We
choose

�1 = 1

2
(1 − �) <

1 − �

1 + �
,

then condition (21) is satisfied, and from (20) and (22) we get that, for all k ∈ I2(x, n) :=
[xn − n�, xn + n�],

ank(m
−�)� Cm�

n
.

Hence, ∑
k∈I2(x,n)

ank(m
−�)�Cn�−1m�.

As before, we can show (we omit the calculations) that for k /∈ I2(x, n), ank(m
−�) exponentially

decreases with respect to n, therefore, we get

gn(m
−�)�Cn�−1m�.

Hence,

fm2(x) =
m/2∑

n=m	

gn(m
−�)�Cm�

m/2∑
n=m	

n�−1 �Cm(1+�)/2. (28)

Collecting estimates (25), (27), and (28), we get the required bound for fm(x).
Thus, we proved that, for the function fm, we have the same bounds from above as those from

below, therefore, (9) and, thus, the theorem is proved. �
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Proof of Corollaries 2 and 3. Corollary 2 follows applying (9) to (8), while, for the proof of
Corollary 3, we note that, for model (5) with the boundary conditions Yin = 0 for all i, we have

Var Yt,s−1 = b−2
n−s∑
k=0

k∑
j=0

(
k

j

)2

ã2j b̃2(k−j), (29)

and again we apply (9) with x = ã. A new effect comes from the factor b−2 in front of the sum
in (29), since, as a and b grow (recall that b = a + 1) with n, this factor becomes dominant. �

Proof of Proposition 4. It is not difficult to see that solution of (12) with given initial conditions
can be written as follows:

Xt =
t∑

k=0

k∑
j=0

(
k

j

)
ajbk−j εt−j−2(k−j).

However, this expression (although having some similarity to the expressions in the two-
dimensional lattice case) is not convenient to calculate the variance, since, in the double sum,
there are repetitions of ε’s. It is known that

Xt =
t∑

k=0

ckεt−k,

where the coefficients ck are functions of a and satisfy the relation

ck = ack−1 + bck−2, k�2, c0 = 1, c1 = a. (30)

It is possible to write a general formula for these coefficients:

c2m =
m∑

j=0

(
2m − j

2m − 2j

)
a2(m−j)bj , c2m+1 =

m∑
j=0

(
2m + 1 − j

2m + 1 − 2j

)
a2m+1−2j bj .

However, these expressions again are too complicated to be useful in estimating the quantity

Var Xt =
t∑

k=0

c2
k . (31)

It turns out that recurrent relation (30) is most useful in estimating ck . Precisely, using this relation
and mathematical induction, one can prove that

C∗ �ci �C∗, i�1,

where

C∗ = a, C∗ = a2 − a + 1.

Therefore, from (31) we get (13), and the proposition is proved. �

Relation (13) means that, for large t, one has Var Xt � t. Probably, the following is true: there
exists a limit of the coefficients cn as n → ∞ (but the behavior of the coefficients is not so simple,
since they are not monotone but oscillating), and there exists a function C(a) such that

Var Xt = C(a)t (1 + o(1)).
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Inequalities (13) give the bounds for this function: C2∗ �C(a)�(C∗)2. The function C(a) is
not symmetric with respect to the point a = 1/2 in the sense that C(a) 
= C(1 − a), since
C(1) = 1, C(0) = 1/2 (if a = 0, then

Xt = Xt−2 + εt = Xt−4 + εt + εt−2 = εt + εt−2 + · · · + εi

with i = 1 or 0, depending on whether t is odd or even). Also looking at the graph of bounds
C∗, C∗ as functions of a, we see that these bounds become less precise for small values of a.
This can be easily explained by the fact that, in the limit case a = 0, each second coefficient ci

is equal to zero, so, for small a, the better strategy to get a bound from below (close to 1/2) is
to consider only coefficients c2i , since each such a coefficient in its expression has term bi . Then
we can get

t/2∑
i=0

c2
2i �

t/2∑
i=0

b2i = (1 − b2)−1(1 − bt+2),

and this bound is close to t/2 for b close to 1.
One more remark concerning Proposition 4 is appropriate here. We considered only the case

a + b = 1, a > 0, b > 0 for model (12) and it is known that this is only a part of points on
the (a, b)-plane giving unit roots (all points consist of sides of the triangle with vertices at points
(0, 1), (−2, −1), (2, −1)). Despite of this, we believe that a quantitative picture will be the same
also for all points on the boundary of this triangle.

Proof of Proposition 5. It is easy to see that, for model (14) with boundary conditions Yt,s,v = 0
for t + s + v = 0, we have

Var Yt,s,v =
t+s+v−1∑

k=0

∑
i,j �0

0� i+j �k

c(k, i, j)2a2ib2j c2(k−i−j),

where

c(k, i, j) = k!
i!j !(k − i − j)! .

Taking a = b = c = 1/3 and denoting t + s + v = m, we see that one has to find the asymptotic
behavior of the function

f (m) =
m∑

n=0

g(n),

where

g(n) = 1

32n

∑
i,j �0

0� i+j �n

c(n, i, j)2.

Since some calculations are similar to those in the proof of Theorem 1, we omit some details of
calculations. Using the well-known identity

n∑
k=0

(
n

k

)2

=
(

2n

n

)
, (32)
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one can get

g(n) =
n∑

i=0

h(i, n), (33)

where

h(i, n) = 1

32n

(
n

i

)2(2(n − i)

n − i

)
.

Considering n, i, and n − i large and applying the Stirling’s formula, one can show that

h(i, n) ∼ C
n

i(n − i)3/2

22(n−i)

32n

(
n

n − i

)2n (
n − i

i

)2i

. (34)

Taking i = nx with 0 < c1 �x�c2 < 1, where c1 and c2 are fixed constants, it is not difficult to
show that the right-hand side of (34) is (as a function of x)

h(nx, n) ∼ z(x) = C

n3/2x(1 − x)3/2
v(x)2n, (35)

where

v(x) = 21−x

3xx(1 − x)1−x
.

Noting that v(1/3) = 1, from (35) we have that h(n/3, n) ∼ z(1/3) = Cn−3/2. The next step,
as in the proof of Theorem 1, is to show that, for all i ∈ [n/3 − n�, n/3 + n�] with some � > 0,
h(i, n) is of the same order as h(n/3, n). To be specific, let us take i0 = n/3 + n�, then, after
some calculations, we get

h(i0, n) = Cn−3/2(U(n, �))−1,

where

ln U(n, �) = 2n ln(1 − a) + 2n

3
(1 + 2a) ln(1 + 3a(1 − a)−1)

and a = 3/(2n1−�). Standard considerations give that

ln U(n, �) = 2na2(1 − O(a)) + o(na2),

and, therefore, the maximal value of � we can take is 1/2. We get

h(i0, n) � n−3/2

and this relation is valid not only for i0 but also for all i ∈ [n/3 − n�, n/3 + n�]. Hence, from
(33) we get

g(n)�Cn−1

and this gives a lower bound in (15). To get an upper bound, it is necessary to show that h(i, n)

for i /∈ [n/3 − n�, n/3 + n�] decreases exponentially with increasing n, and this can be done
in a similar way as in the proof of Theorem 1. For example, considering 0 < i < n/3 − n� we
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separately consider three cases: 0 < i�C (in this case, we cannot use Stirling’s formula for i!),
i = n�, 0 < � < 1, and i = Cn with C < 1/3 (in this case we use the fact that v(C) < 1).
Having this shown, it is not difficult to finish the proof and we leave it to the reader. �

Proof of Proposition 6. It is easy to see that now we have to show that the following function is
bounded:

f1(m) =
m∑

n=0

g1(n),

where

g1(n) = 1

42n

∑
i,j,k �0

0� i+j+k �n

c1(n, i, j, k)2,

and c1(n, i, j, k) are defined in (17). Using the same identity as in (32), one can get

g1(n) = 1

42n

n∑
i=0

(
n

i

)2 n−i∑
j=0

(
n − i

j

)2(2(n − i − j)

n − i − j

)
.

The inner sum in the last formula has the same form as the quantity gn from (33), therefore, using
the relation gn � n−1 proved in the proof of Proposition 5, we have

g1(n) = 1

42n

n∑
i=0

(
n

i

)2

32(n−i)gn−i �
n∑

i=0

h1(i, n),

where

h1(i, n) = Cn32(n−i)

i(n − i)242n

(
n

n − i

)2n (
n − i

i

)2i

.

Again, taking i = nx, we have

h1(i, n) = C

n(1 − x)2
(v1(x))2n,

where

v1(x) = 31−x

4xx(1 − x)1−x
.

It is easy to see that v1(1/4) = 1, limx→0 v1(x) = 3/4, and limx→1 v1(x) = 1/4, therefore, we
have that h1(n/4, n) is of order n−2 and that the number of terms h1(i, n) of such order can be
only n� with � < 1 (since if x 
= 1/4, then v1(x) < 1). This implies that

g1(n)�Cn�−2,

and the function f1(m) is bounded. Proposition 6 is proved. �
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