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1. Introduction

The concept of cointegration was introduced in the seminal work of Granger (1981) and

further developed by Engle and Granger (1987),see also Engle and Yoo (1987), Stock and

Watson (1988), Park and Phillips (1988), Phillips (1991), Park (1992), and Johansen (1988,

1991). Studies in empirical macroeconomics typically involve non-stationary, integrated

and cointegrated variables, such as prices, consumption, money demand, exchange rates,

etc. A basic cointegration model for two macroeconomic variables, xt and yt, can be

written as

yt = µ + βxt + ut, (∗)

where it is assumed that

(i) xt is an integrated process,

xt = xt−1 + et, (∗∗)

and

(ii) the disturbances (ut, et) form a bivariate white-noise stationary process.

The classical way of removing the stochastic trend relies on differencing procedures.

However, because economic variables are typically cointegrated, the differencing of the

data is counter-productive, since it obscures the long term relationship between yt and xt.

There are two well-developed methods to test for cointegration: (1) the Engle-Granger-

Phillips approach (see Engle and Granger (1987), Park and Phillips (1988), Phillips (1991))

amounts to testing for unit roots, for which the Dickey–Fuller and Durbin–Watson statistics

can be employed; (2)the Johansen (1988) approach is based on a vector autoregressive

representation of the time-series treating all variables as endogenous (see, for example,

Watson (1997)). For a detailed introduction to the theory of cointegration, we refer to

the reviews in Banerjee et al. (1993), Hargreaves (1994), Bhaskara Rao (1994), Hatanaka

(1996) and Johansen (1996).

In the literature on cointegration, it is generally assumed that the disturbances (ut, et)

are in the domain of attraction of the Gaussian distribution. However, numerous empirical

studies contradict the Gaussian assumption. Heavy-tailed and asymmetrically distributed
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samples are not infrequently observed in empirical economic time series, and these empirical

facts cannot be explained with the usual Gaussian models. P.C.B. Phillips (see Phillips

(1990), Phillips and Loretan (1991), Loretan and Phillips (1994)) addressed the issue

of heavy-tailedness and asymmetry in econometric time-series in a rigorous fashion by

introducing stable non-Gaussian (Paretian) variables for modeling the innovation processes

in econometric and time series models (see also Chan and Tran (1989), Phillips (1995),

Caner (1996, 1998), Kim, Mittnik and Rachev (1996), Mittnik, Rachev and Paolella (1997),

Rachev, Kim and Mittnik (1997), Paulauskas and Rachev (1998), Mittnik and Rachev

(1999)).

In this paper we extend the stable Paretian model in econometrics, developing the

asymptotic theory for the cointegration model (*), (**) under the assumption that the

bivariate innovation process (ut, et) has heavy-tailed marginal distributions, specifically,

we assume that (ut, et) are in the normal domain of attraction of a bivariate infinitely

divisible vector with stable components, having possibly different indexes of stability (i.e.,

different degrees of heavy-tailedness).

The paper is organized as follows. In Section 2, after a more detailed description of

the innovation process (ut, et), t ≥ 1, we state and prove our main result (Theorem 1).

We describe the limiting behavior of the joint 4-dimensional distribution of the estimators

for β, µ, and the corresponding t-statistics tβ and tµ. This general result extends some

of the results of Park and Phillips (1988) which were derived under the assumption of the

finite variance innovation process. In particular, Theorem 1 provides limiting expressions

for all the statistics which are involved in the cointegration model driven by heavy-tailed

dependent disturbances with different indexes of stability. In Section 3, we present numer-

ical simulation results of the pre-limiting and limiting distributions of the test statistics

derived in Section 2.

2. Statistical Inference with Heavy-tailed Variables

Consider the regression model

yi = µ + βxi + ui, i = 1, ..., n, (1)
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where sequence (xi) is generated by a random-walk

xi = xi−1 + ei, i ≥ 1. (2)

The unknown parameters µ and β are to be estimated. We assume that the sequence of

two-dimensional random variables (ui, ei), i ≥ 1, is a sequence of i.i.d. random vectors in

the domain of normal attraction (DAN) of some two-dimensional ᾱ-stable random vector,

where ᾱ = (α1, α2), 0 < αj ≤ 2, j = 1, 2. This means that the sums
∑n

i=1(ui, ei) , properly

normalized by diagonal matrices, converge in distribution to an infinitely divisible vector

with each coordinate being stable. Note that those stable coordinates may have different

indexes of stability (see (6) below). (We refer to Resnick and Greenwood (1979) for a

description of the necessary and sufficient conditions characterizing DAN for ᾱ–stable

random pairs and to Feller (1996) for a detailed analysis of multidimensional infinitely

divisible laws). Furthermore, we assume that if the first moments of ui and ei exist,

then E(ui) = E(ei) = 0. In Phillips and Durlauf (1986) and Park and Phillips (1988),

the authors examined the model when the innovations (ui, ei), i ≥ 1 are assumed to be

normally distributed weakly dependent random vectors.

Denote

Sn = (Sn1, Sn2), Sn1 = n−1/α1

n∑

i=1

ui, Sn2 = n−1/α2

n∑

i=1

ei,

Zn(t) =
(
Zn1(t), Zn2(t)

)
, Znj(t) = S[nt],j 0 ≤ t ≤ 1, (3)

where [a] stands for the integer part of a. Let D = D[0, 1] be the Skorokhod space of

càdlàg functions defined on [0, 1] and equipped with the Skorokhod metric, setting D as a

Polish space (see, for example, Billingsley (1968)). By Dk = D
(
[0, 1], Rk

)
we denote the

corresponding Skorokhod space of Rk-valued càdlàg functions; and Dk = D× · · · ×D will

denote usual product of k topological spaces with the product topology.

In what follows, we use the following notation for norms in R2 : ‖x‖ =
(
x2

1 + x2
2

)1/2

and ‖x‖∞ = maxi=1,2 |xi|.
Next, let

{
ξ(t) =

(
ξ1(t), ξ2(t)

)
, t ≥ 0

}
be a Lévy process with values in R2, i.e., a

stochastically continuous bivariate process with independent and strictly stationary incre-

ments. Then, it is well-known (see, for example, Protter (1990) or Gikhman and Skorokhod
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(1969)) that there exist a vector a ∈ R2, a symmetric non-negative defined matrix Γ, and

a measure ν on R2 satisfying

ν
({0}) = 0,

∫

R2
‖x‖2(1 + ‖x‖2)−1

ν(dx) < ∞,

such that for any z ∈ R2 the characteristic function of ξ(t) has the following form:

E exp
{
i
(
z, ξ(t)

)}
= exp

{
th(z)

}
, (4)

where (z, x) for z, x ∈ R2 denotes usual scalar product and

h(z) = i(z, a)− 1
2
(Γz, z)+

∫

‖x‖≤1

(
ei(x,z)−1−(x, z)

)
ν(dx)+

∫

‖x‖>1

(
ei(x,z)−1

)
ν(dx). (5)

In (5) ν is the so-called Lévy measure while the matrix Γ defines the Gaussian part of the

distribution of ξ.

We shall start our analysis of (1) and (2) with some auxiliary results; we shall inves-

tigate the following limiting assertions: as n →∞,

Sn
d→ ξ(1) in R2 (6)

Zn(·) d→ ξ(·) in D2 (7)

Zn(·) d→ ξ(·) in D2, (8)

where d→ stands for the weak convergence in the corresponding space. Note that the

convergence in (6) is equivalent to the domain-of-attraction assumptions we made for

innovation sequence (ui, ei), i ≥ 1.

We exclude the Gaussian case, α1 = α2 = 2, in the following proposition, since this

case is well-studied. In what follows, B(X) stands for the class of Borel sets of a metric

space X.

Proposition 1. (i) Case 0 < αi < 2, i = 1, 2. Suppose that in (5), a = 0 and Γ = 0.

Then, (6)–(8) are equivalent and each of them is equivalent to the existence of the

following limit:

lim
n→∞

nP
{(

n−1/α1uj , n
−1/α2ej

) ∈ A
}

= ν(A), (9)
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for all A ∈ B(
R2 \ {0}) such that ν(∂A) = 0 and ν(A) < ∞.

(ii) Case 0 < α1 < α2 = 2 : Suppose that in (5), a = 0, Γ =
[

0 0
0 σ2

]
and let

ν be a Lévy measure on the real line. Then, (6)–(8) are equivalent, and each of

them is equivalent to the following two assertions: for any A ∈ (B(R)\{0}) such

that ν(∂A) = 0, ν(A) < ∞, we have

lim
n→∞

nP
{
n−1/α1u1 ∈ A

}
= ν(A);

and for all ε > 0,

lim
n→∞

n
{

E
[
n−1e2

11
(|e1| < ε

√
n
)]− (

E
[
n−1/2e11

(|e1| < ε
√

n
)])2

}
= σ2.

Resnick and Greenwood (1979) showed the equivalence of (6) and (7). Paulauskas and

Rachev (1998) stated (for the general d-dimensional case) that (6) implies (8). Note that,

in general, (8) is a stronger relationship than (7).

The Lévy measure of the process ξ in case (i) can be described as follows. Define the

mapping τ : R2 → R2, τ(x) =
(
sign x1|x1|1/α1 , signx2|x2|1/α2

)
, and let ν̃ = ν ◦ τ . Then,

ν̃
{

x : ‖x‖ > r,
x

‖x‖ ∈ B
}

= r−1H(B),

where H is a finite measure on the unit sphere S2 =
{
x ∈ R2 : ‖x‖ = 1

}
, and B ∈ B(S2).

If α1 = α2 = α < 2, we obtain the well-known condition for a random vector to be in the

α-stable DNA:

ν
{

x : ‖x‖ > r,
x

‖x‖ ∈ B
}

= r−αH(B).

It is known (see Sharpe, 1969) that, in Case (ii) of Proposition 1, the first component ξ1 of

the Lévy process ξ and the second component,- the Brownian motion ξ2,- are independent

processes.

With these facts on the innovation process (ut, et), t ≥ 1, we have completed the

preliminary stochastic analysis of the model (1), (2). Our next goal is to study the joint

asymptotic distribution of the ordinary least squares (OLS) estimators of β and µ,

β̂n : =

n

n∑

j=1

yjxj −
n∑

i=1

xi

n∑

j=1

yj

n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2

and µ̂n : =

n∑

j=1

x2
j

n∑

i=1

yi −
n∑

j=1

xj

n∑

i=1

yixi

n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2

, (10)
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and the corresponding t-statistics

t
β̂

: =
β̂n − β

s
β̂

t
µ̂

: =
µ̂n − µ

s
µ̂

. (11)

In (11) we have set

s2

β̂
: =

σ̂2
u

n∑

i=1

(x2
i − x̄2)

, s2

µ̂
: =

σ̂2
un−1

n∑

i=1

x2
i

n∑

i=1

(x2
i − x̄2)

,

and, x̄ = n−1
∑n

i=1 xi, σ̂2
u : = n−1

∑n
j=1 û2

j , ûj : = yj − µ̂n − β̂nxj .

Next, we introduce some notations related to the limiting distributions of the statistics

defined in (10) and (11). Recall that ξ(t) =
(
ξ1(t), ξ2(t)

)
is the limiting process in (8) and

thus, ξi(t), i = 1, 2, are αi-stable Lévy processes, possibly dependent, if αi < 2. If α1 = 2,

we assume that Eu2
1 = σ2

1 and then indeed ξ1 is a Brownian motion. Similarly, if α2 = 2,

then Ee2
1 = σ2

2 and ξ2 is a Brownian motion. Further, by

∫ t

0

ξ−i (s)dξj(s), i, j = 1, 2,

we denote an Itô stochastic integral. (For a detailed treatment of the theory of stochastic

integration we refer to the monographs Protter (1990), Elliott (1982) and Kopp (1984)).

For x ∈ D[0, 1] and 0 < s ≤ 1, x−(s) denotes, as usual, the left limit, limu↑s(u). To

simplify notation, we suppress the superscript in the stochastic integral and simply write
∫ t

0
ξi(s) dξj(s) or

∫ t

0
ξi dξj , when there will be no ambiguity. Define next the so-called

“square brackets” process (see, for example, Kopp (1984), p. 160):

[
ξi, ξj

]
t

: = ξi(t)ξj(t)−
∫ t

0

ξj dξi −
∫ t

0

ξi dξj ,
[
ξi

]
t

: =
[
ξi, ξi

]
t
.

Set γ1 : = 1− 1
α1

+ 1
α2

and γ2 : = 1− 1
α1

. Our first theorem deals with the asymptotic

behavior of the joint distribution of the 4-dimensional vector

(
nγ1(β̂n − β), nγ2(µ̂n − µ), t

β̂
, t

µ̂

)
, as n →∞. (12)
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It turns out that the weak limit of the above sequence can be expressed as a rather

complicated functional of the process ξ. To make the formulation of the result more

concise, we define the following random quantities:

Y1 : = ξ1(1)ξ2(1)−
∫ 1

0

ξ1(u) dξ2(u), Y2 : = ξ1(1),

Y3 : =
∫ 1

0

ξ2(u) du, Y4 : =
∫ 1

0

ξ2
2(u) du,

Y5 : =
[
ξ1

]
1
: = ξ2

1(1)− 2
∫ 1

0

ξ1(u) dξ1(u), and Y6 : = Y4 − Y 2
3 .

Theorem 1. Suppose that 1 < α1 < 2, or α2 < α1(1−α1)−1, if α1 ≤ 1. Then, as n →∞,

(
nγ1(β̂n − β), nγ2(µ̂n − µ), t

β̂
, t

µ̂

) d→(V1, V2, V3, V4), (13)

where

V1 =
Y1 − Y2Y3

Y6
, V2 =

(Y2Y4 − Y1Y3)
Y6

, (14)

V3 =
Y1 − Y2Y3√

Y5Y6

, V4 =
(Y2Y4 − Y1Y3)√

Y4Y5Y6

. (15)

If α1 = 2, 0 < α2 < 2, then V3 and V4 in (13) admit the following representations:

V3 =
Ỹ1 − Ỹ2Y3√

Y6

and V4 =
(Ỹ2Y4 − Ỹ1Y3)√

Y4Y6

,

where Ỹ1: = W (1)ξ2(1) − ∫ 1

0
W (u) dξ2(u), Ỹ2 = W (1), and {W (t), t ≥ 0} is a standard

Wiener process (Brownian motion).

Remark 1. Paulauskas and Rachev (1998) studied the multivariate model (1), (2), but

without the intercept and derived the limit distribution for OLS estimator β̂n. Combining

their result with our Theorem 1, it would not be difficult to state the multivariate version

of Theorem 1.

Remark 2. As a consequence of Theorem 1 we can derive the marginal limiting relations

for β̂n − β, µ̂n − µ, t
β̂

and t
µ̂
. In particular, the confidence intervals for β and µ can

be constructed. Also as a corollary of Theorem 1, we can study the asymptotic joint

distribution of the bivariate statistics
(
nγ1(β̂n − β), nγ2(µ̂n − µ)

)
and (t

β̂
, t

µ̂
). Note that

the limiting pairs (V1, V2) and (V3, V4) have dependent components.
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Remark 3. Some comments are appropriate on the restriction for the multiindex ᾱ en-

suring the consistency of estimators under consideration. The restriction α1 > 1 is rather

natural, since if the ”noise” in (1) has no finite mean then it is impossible by OLS to

recover µ. It is more difficult to interpret the second relation which says that even in the

case 0 < α1 ≤ 1, where there is no consistency for µ̂n, we still can get the consistent

estimator for b if α2 < α1(1 − α1)−1. This restriction on α1 and α2 remains even if we

consider the model without intercept µ (see Theorem 2 bellow).

Proof of Theorem 1. From the definitions of β̂n, µ̂n, t
β̂

and t
µ̂

(see (10) and (11)), we

obtain the following representations:

β̂n − β =
Y1n

Y3n
, µ̂n − µ =

Y2n

Y3n
, t

β̂
=

β̂n − β

s
β̂

=
Y1n

Y3ns
β̂

, (16)

t
µ̂

=
µ̂n − µ

s
µ̂

=
Y2n

Y3ns
µ̂

,

where

Y1n : = n

n∑

i=1

uixi −
n∑

i=1

xi

n∑

i=1

ui,

Y2n : =
n∑

i=1

x2
i

n∑

i=1

ui −
n∑

i=1

xi

n∑

i=1

uixi,

Y3n : = n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2

.

(17)

Our next step is to derive the right-order normalization coefficients for β̂n − β and µ̂− µ,

and at the same time to express all sums entering the expressions in (17) as functionals of

the processes Zn1 and Zn2, see (3). Because xk = x0 +
∑k

m=1 em, the right normalization

for sum
∑n

k=1 ukxk is given by n−1/α1−1/α2 . In fact, we can write

n−1/α1−1/α2

n∑

k=1

ukxk

=n−1/α1−1/α2

(( n∑

k=1

uk

)( n∑
m=1

em

)
−

n∑
m=1

em

m−1∑

k=1

uk

)
+ op(1)

=Zn1(1)Zn2(1)−
∫ 1

0

Zn1(t) dZn2(t) + op(1). (18)
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In a similar fashion we obtain

n−1−1/α2

n∑

k=1

x2
k =

∫ 1

0

Z2
n2(t) dt + op(1), (19)

n−1−2/α2

n∑

i=1

xi =
∫ 1

0

Zn2(t) dt + op(1), (20)

n−1/α1

n∑

i=1

ui = Zn1(1). (21)

Therefore, the right normalization factors for Y1n, Y2n, Y3n are n−1−1/α1−1/α2 ,

n−1−1/α1−2/α2 , and n−2−2/α2 , respectively. Further more, the right normalization for

β̂n − β is nγ1 , and for µ̂n − µ is nγ2 .

Consider next s
β̂

and s
µ̂
. We write

σ̂2
u = n−1

n∑

i=1

(
ui − (µ̂n − µ)− (β̂n − β)xi

)2

= n−1
n∑

i=1

u2
i + (µ̂n − µ)2 + n−1(β̂n − β)2

n∑

i=1

x2
i

− 2n−1(µ̂n − µ)
n∑

i=1

ui − 2n−1(β̂n − β)
n∑

i=1

uixi

+ 2n−1(µ̂n − µ)(β̂n − β)
n∑

i=1

xi.

Using the information about normalization for all terms involved in the expression of σ̂2
u,

one can verify that the leading term is n−1
∑n

i=1 u2
i , and that the right normalization for

this term is n1−2/α1 . Therefore

n1−2/α1 σ̂2
u = n−2/α1

n∑

i=1

u2
i + op(1)

= Z2
n1(1)− 2

∫ 1

0

Zn1(t) dZn1(t) + op(1).

(22)

Since
∑n

i=1(x
2
i − x̄2) = n−1Y3n, we see that the right normalization for s2

β̂
is n2γ1 , and for

s2

µ̂
is n2γ2 . Thus, we have

nγ1s
β̂

=
nγ1 σ̂u

(n−1Y3n)1/2
=

(
n−2/α1

n∑

i=1

u2
i

)1/2

(
n−2−2/α2Y3n

)1/2
+ op(1),
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nγ2s
µ̂

=

nγ2 σ̂u

(
n−1

n∑

i=1

x2
i

)1/2

(n−1Y3n)1/2

=

(
n−2/α1

n∑

i=1

u2
i

)1/2(
n−1−2/α2

n∑

i=1

x2
i

)1/2

(
n−2−2/α2Y3n

)1/2
+ op(1). (23)

These expressions show that t
β̂

and t
µ̂

are properly normalized.

Combining (16)–(23), we have

(
nγ1(β̂n − β), nγ2(µ̂n − µ), t

β̂
, t

µ̂

)
=

(
V1n, V2n, V3n, V4n

)
+ op(1), (24)

where
V1n : =

A1n −A2nA3n

A6n
, V2n : =

A2nA4n −A1nA3n

A6n
,

V3n : =
A1n −A2nA3n√

A5nA6n

, V4n : =
A2nA4n −A1nA3n√

A4nA5nA6n

,

(25)

and

A1n : = Zn1(1)Zn2(1)−
∫ 1

0

Zn1(u) dZn2(u),

A2n : = Zn1(1), A3n =
∫ 1

0

Zn2(u) d(u),

A4n : =
∫ 1

0

Z2
n2(u) d(u),

A5n : = Z2
n1(1)− 2

∫ 1

0

Zn1(u) dZn1(u), and

A6n : = A4n −A2
3n.

Although we expressed vector (12) as a function of Zn plus a negligible part, this function

is not continuous, due to the presence of stochastic integrals, and thus, we cannot immedi-

ately apply the continuous mapping theorem. The essential ingredient in the proof is the

following proposition of Paulauskas and Rachev (1998).

Proposition 2. Suppose that the sequence Zn(t) =
(
Zn1(t), Zn2(t)

)
, 0 ≤ t ≤ 1, is defined

by (3) and that (8) holds. Then, as n →∞,

(
Zn(t),

∫ t

0

Zn1(s) dZn1(s),
∫ t

0

Zn1(s) dZn2(s)
)

d→
(
ξ(t),

∫ t

0

ξ1(s) dξ1(s),
∫ t

0

ξ1(s) dξ2(s)
)

in D4.

(26)
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The proof of this proposition is based on results of Kurtz and Protter (1991) and

Jakubowski et al. (1989) on convergence of stochastic integrals for semimartingales.

Having shown the relations (24) and (26), we can complete the proof of Theorem 1 by

using the well-known fact that if Xn
d→X0 and Yn

P→ 0, then Xn+Yn
d→X0, and by applying

the continuous mapping theorem. To this end let us define the mapping f : D4 → R4,

f = (f1, f2, f3, f4) with coordinates f1(x) = g1(x)
(
g2(x)

)−1, f2(x) = g3(x)
(
g2(x)

)−1,

f3(x) = g1(x)
(
g4(x)

)−1, and f4(x) = g3(x)
(
g5(x)

)−1. Here, x = (x1, x2, x3, x4) ∈ D4 and

functions gi: D4 → R, i = 1, 2, 3, 4 are defined as follows:

q1(x) := x1(1)x2(1)− x4(1)− x2(1)
∫ 1

0

x2(u) du,

q2(x) :=
∫ 1

0

x2
2(u) du−

( ∫ 1

0

x2(u) du
)2

,

q3(x) := x2(1)
∫ 1

0

x2
2(u) du−

( ∫ 1

0

x2(u) du
)(

x1(1)x2(1)− x4(1)
)
,

q4(x) :=
(
(x2

1(1)− 2x3(1)g2(x)
)1/2

, and

q5(x) := q4(x)
(∫ 1

0

x2
2(u) du

)1/2

.

Let Mf denote the set of points of discontinuity of the mapping f and let m stand for the

distribution of the limiting right-hand side vector in (26). Then we have

m(Mf ) := m
({

x ∈ D4: g2(x) = 0, or x2
1(1)− 2x3(1) = 0,

or
∫ 1

0

x2(u) du = 0
})

≤ P
{
ξ2(t) = 0

}
+ P

{[
ξ1

]
1

= 0
}

= 0.

Applying the continuous mapping theorem (see Billingsley, 1968) with the function f and

making use of (26), we prove (13).

It remains to consider the case α1 = 2. In this case the limiting behavior of sum
∑n

t=1 u2
t is different from the case α1 < 2. We assume that Eu2

1 = σ2 < ∞, therefore, by

the strong law of large numbers,

n−1
n∑

t=1

u2
t → σ2 a.s. (27)
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Now in (25), we replace the quantities V3n and V4n by

Ṽ3n =
A1n −A2nA3n√

A1n

, Ṽ4n =
A2nA4n −A1nA3n√

A4nA6n

and replace, accordingly, the mapping f into f̃ . Then, as before, we apply f̃ to (26). The

last step in the proof is to recall the fact that if Xn
d→X0 and Yn

p→ a (in our case this

will be An5 = n−1
∑n

i=1 u2
i → σ2 a.s. by (27)), then (Xn, Yn) d→(X0, a). Applying the

continuous mapping theorem once more , now with the map h: R5 → R4, h(x1, ..., x5) =
(
x1, x2, x3x

−1
5 , x4x

−1
5

)
, we prove the theorem.

Consider next the model (1), (2) with µ = 0. Then the OLS estimator for β is given

by

β̃n : =

n∑

j=1

yjxj

n∑

j=1

x2
j

(28)

and the corresponding t-statistic is

tβ̃ : =
β̃n − β

sβ̃

, (29)

where s2
β̃

: = σ̂2
u

/∑n
i=1 x2

i , and σ̂2
u = n−1

∑n
j=1 û2

j , ûj = yj − β̃nxj . Using the same

arguments as in the proof of Theorem 1 we obtain the following asymptotic results.

Theorem 2. Suppose that µ = 0 in the cointegration model (1), (2), with α2 < α1(1 −
α1)−1, if α1 ≤ 1. Then, as n →∞,

n1− 1
α1

+ 1
α2

(
β̃n − β, tβ̃

) d→(Z, V ), (30)

where β̃n and tβ̃ are given by (28) and (29), and

Z : =
ξ1(1)ξ2(1)− ∫ 1

0
ξ1(s) dξ2(s)∫ 1

0
ξ2
2(s) ds

(31)

V =
ξ1(1)ξ2(1)− ∫ 1

0
ξ1(s) dξ2(s)([

ξ1

]
1

∫ 1

0
ξ2
2(s) ds

)1/2
. (32)
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Here ξ = ξ = (ξ1, ξ2) is the limiting process in (6). If α1 = 2 and 0 < α2 < 2, then the

limiting relationship (30) still holds with Z given by (31) and ξ1 = W ,

V =
W (1)ξ2(1)− ∫ 1

0
ξ2(s) dW (s)

( ∫ 1

0
ξ2
2(s) ds

)1/2
, (33)

where W (t), t ≥ 0 is a Brownian motion, and W and ξ2 are independent.

3. Simulation of limit distribution
Because the limiting vector (V1, . . . , V4) in (13) has a rather complicated structure and

there is no close-form analytical expression of its distribution, we use (V1n, . . . , V4n) defined

in (25) with sufficiently large n to simulate and analyze the distribution of (V1, . . . , V4).

To do so, we generated values (uji, eji), j = 1, 2, ..., n, i = 1, ..., m, of a vector (u, e),

where u and e are two independent stable random variables with exponents α1 and α2 and

skewness parameters β1 and β2, respectively. Then for each i = 1, 2, ...,m we evaluated the

quantities Vjn, j = 1, 2, 3, 4 making use of (25). Note, that since Znj are step-functions,

the quantities Aj,n, j = 1, 2, ...6 are expressed by means of various sums. We consider

the empirical distribution of m 4-dimensional values as an approximation of the limiting

distribution in (13). Starting with values n = m = 500, we then increased the sample sizes

to n = 1200, m = 800 (and ,in some cases, to n = 2000 ). Sufficiently large values for n

guarantee stability (stability here means that the prelimiting distribution is close to the

limiting one ) for the pair (V3, V4). Unfortunately, even n = 2000 does not show stability

of the empirical distribution of the pair (V1, V2).

The simulation results are presented in a number of tables and graphs. We chose 9

parameters settings for α1, α2, β1, and β2. In addition, we generated the distribution

of (V1, . . . , V4) for the Gaussian case, (α1 = α2 = 2), which we denote by number 10 in

tables and graphs. For example, the notation “V 3, case 10” stands for the coordinate V3

in the case of Gaussian innovations, while “V 2, case 3” denotes coordinate V2 in the case

of stable innovations with parameters given in case 3. The parameter values are given in

Table 1.
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cases
param 1 2 3 4 5 6 7 8 9 10

α1 1.1 1.4 1.8 1.1 1.8 1.4 1.4 1.1 1.8 2

α2 1.3 1.4 1.7 1.7 1.3 1.4 1.4 1.8 1.1 2

β1 -0.50 0.0 0.25 -0.50 0.25 -0.5 0.5 0.9 -0.9 -

β2 -0.25 0.0 0.50 -0.25 0.50 0.5 -0.5 -0.9 0.9 -

EV3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

V arV3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

EV4 - 0.0 0.0 - 0.0 0.4 -0.3 - -0.1 0.0

V arV4 - 1.0 1.0 - 1.0 1.3 1.1 - 1.0 1.0

Table 1

In Fig. 1 there are several examples of plotted histograms of marginal densities of

random variables V3 and V4 in some cases. We have not included graphs of the marginal

distributions of V1 and V2 since, as mentioned above, the stability achieved for the first

pair of coordinates is not satisfactory. One can find more graphical material on simulation

results (including graphics of two-dimensional densities of the pair (V3, V4)) in our technical

report [30].

Based on simulation results , the following observations can be made. The marginal

distributions of (V1, V2) are heavy-tailed, while the pair (V3, V4) has very light tails (this fact

is due to self-normalizing effect) and is much more convenient for constructing confidence

intervals. We conjecture that for the pair (V3, V4) lower-order moments exist, more over,

EVj = 0, V arVj = 1, j = 3, 4 independently of values of parameters αi and βi, i = 1, 2.

Although at present we are not able to prove this, simulation shows that: increasing n

stabilizes the empirical mean and variance. Therefore, in Table 1 we provide values of

EVjn and V ar(Vjn), j = 3, 4, rounded to one decimal point, as the theoretical mean and

variance of V3 and V4. In the cases 1, 4, 8 bar sign is left instead of EV4 and V arV4, since

there was no stability in calculations. It seems that instability in these cases is caused by

the closeness of the parameter α1 to the boundary value 1. We recall that for α1 = 1 there

is no consistency of the estimator µ̂n, therefore in the case α1 = 1, 1 convergence can be

rather slow, especially if we take expected values or moments of higher order. Moreover,

the centralized and normalized distributions (V ar(Vi))−1/2(Vi − EVi) i = 3, 4 are very

similar to the standard normal distribution. In fact, the Chi-square criterion rejects the

hypothesis about normality of these distributions with 90%-significance level only in three
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cases for V3 and in none for V4. We have no theoretical explanation for this fact and

intend to conduct further research on this. Therefore, to construct confidence intervals for

the parameter β, we can use the probabilities P
{|V3| < x

}
given in Table 2, and for the

parameter µ we can use probabilities

P
{∣∣(V ar(V4))−1/2(V4 − EV4)

∣∣ < x
}

given in Table 3 and using values EV4 and V ar(V4) from Table 1. Tables 2 and 3 support

the conjecture that distributions of V3 and V4 are not sensitive to the changes of the

parameters α’s and β’s, since all columns in these tables are rather similar and close to

corresponding probabilities of standard normal law, which in both tables are given in the

column with number N . That is, in this column, there are given probabilities P{|η| ≤ x},
where η is a standard normal random variable with mean zero and unit variance.

case
x 1 2 3 4 5 6 7 8 9 10 N

1.5 0.8613 0.8588 0.8600 0.8738 0.8563 0.8588 0.8725 0.8588 0.8750 0.8563 0.8664

1.6 0.8888 0.8875 0.8788 0.8975 0.8838 0.8875 0.8988 0.8863 0.8913 0.8938 0.8904

1.7 0.9125 0.9125 0.9050 0.9250 0.9138 0.9175 0.9175 0.9100 0.9113 0.9113 0.9109

1.8 0.9363 0.9300 0.9263 0.9375 0.9363 0.9275 0.9438 0.9250 0.9225 0.9313 0.9281

1.9 0.9450 0.9463 0.9425 0.9500 0.9500 0.9475 0.9525 0.9425 0.9363 0.9475 0.9426

2.0 0.9563 0.9563 0.9625 0.9550 0.9638 0.9625 0.9650 0.9550 0.9575 0.9650 0.9545

2.1 0.9650 0.9663 0.9688 0.9675 0.9700 0.9638 0.9738 0.9650 0.9663 0.9738 0.9643

2.2 0.9700 0.9725 0.9738 0.9738 0.9788 0.9750 0.9800 0.9763 0.9725 0.9850 0.9722

2.3 0.9775 0.9763 0.9838 0.9775 0.9825 0.9838 0.9850 0.9788 0.9800 0.9875 0.9786

2.4 0.9838 0.9838 0.9900 0.9800 0.9863 0.9888 0.9888 0.9838 0.9863 0.9888 0.9836

2.5 0.9863 0.9863 0.9925 0.9825 0.9925 0.9938 0.9900 0.9888 0.9913 0.9913 0.9876

2.6 0.9875 0.9888 0.9950 0.9863 0.9950 0.9950 0.9913 0.9938 0.9938 0.9950 0.9907

2.7 0.9913 0.9913 0.9975 0.9950 0.9950 0.9963 0.9913 0.9963 0.9950 0.9988 0.9931

2.8 0.9938 0.9913 1.0000 0.9963 0.9963 0.9975 0.9925 0.9975 0.9975 1.0000 0.9949

2.9 0.9963 0.9950 1.0000 0.9963 0.9963 0.9975 0.9975 0.9975 0.9988 1.0000 0.9963

3.0 0.9975 0.9975 1.0000 0.9975 0.9988 0.9988 0.9988 0.9988 1.0000 1.0000 0.9973

3.1 0.9988 0.9988 1.0000 0.9988 0.9988 1.0000 0.9988 0.9988 1.0000 1.0000 0.9981

3.2 0.9988 0.9988 1.0000 1.0000 0.9988 1.0000 0.9988 0.9988 1.0000 1.0000 0.9986

3.3 0.9988 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 0.9990

3.4 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 0.9993

3.5 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 0.9995

Table 2 P{|V3| < x}
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case
x 1 2 3 4 5 6 7 8 9 10 N

1.5 0.8913 0.8650 0.8675 0.8988 0.8538 0.8738 0.8613 0.9063 0.8538 0.8663 0.8664

1.6 0.9063 0.8950 0.8963 0.9175 0.8850 0.9025 0.8938 0.9175 0.8850 0.8938 0.8904

1.7 0.9163 0.9125 0.9100 0.9363 0.9100 0.9238 0.9163 0.9238 0.9025 0.9088 0.9109

1.8 0.9313 0.9350 0.9263 0.9463 0.9238 0.9413 0.9325 0.9388 0.9250 0.9213 0.9281

1.9 0.9463 0.9475 0.9350 0.9550 0.9425 0.9525 0.9425 0.9500 0.9375 0.9325 0.9426

2.0 0.9588 0.9625 0.9500 0.9575 0.9675 0.9613 0.9525 0.9613 0.9513 0.9425 0.9545

2.1 0.9663 0.9700 0.9675 0.9650 0.9750 0.9738 0.9675 0.9663 0.9525 0.9563 0.9643

2.2 0.9700 0.9775 0.9738 0.9700 0.9838 0.9763 0.9738 0.9700 0.9663 0.9725 0.9722

2.3 0.9763 0.9838 0.9763 0.9700 0.9888 0.9800 0.9788 0.9713 0.9750 0.9775 0.9786

2.4 0.9763 0.9913 0.9863 0.9750 0.9913 0.9863 0.9825 0.9788 0.9825 0.9825 0.9836

2.5 0.9763 0.9938 0.9900 0.9750 0.9963 0.9900 0.9875 0.9800 0.9863 0.9888 0.9876

2.6 0.9850 0.9950 0.9913 0.9788 0.9975 0.9900 0.9900 0.9813 0.9925 0.9900 0.9907

2.7 0.9863 0.9950 0.9975 0.9800 0.9988 0.9925 0.9913 0.9850 0.9963 0.9950 0.9931

2.8 0.9900 0.9963 0.9988 0.9813 0.9988 0.9938 0.9938 0.9875 0.9975 0.9975 0.9949

2.9 0.9913 0.9988 0.9988 0.9838 0.9988 0.9938 0.9938 0.9888 0.9975 0.9988 0.9963

3.0 0.9938 0.9988 1.0000 0.9863 0.9988 0.9938 0.9950 0.9888 0.9988 0.9988 0.9973

3.1 0.9938 0.9988 1.0000 0.9875 0.9988 0.9963 0.9975 0.9900 0.9988 1.0000 0.9981

3.2 0.9938 0.9988 1.0000 0.9888 1.0000 0.9963 0.9988 0.9913 1.0000 1.0000 0.9986

3.3 0.9950 0.9988 1.0000 0.9888 1.0000 0.9975 0.9988 0.9913 1.0000 1.0000 0.9990

3.4 0.9950 1.0000 1.0000 0.9913 1.0000 1.0000 0.9988 0.9913 1.0000 1.0000 0.9993

3.5 0.9950 1.0000 1.0000 0.9925 1.0000 1.0000 0.9988 0.9925 1.0000 1.0000 0.9995

Table 3 P
{
(V arV4)−1/2|V4 − EV4| ≤ x

}

4. Conclusion

We have extended Phillips’ approach to econometric models with heavy-tailed inno-

vations by developing asymptotic theory for cointegration models with innovations having

infinitely divisible distributions. This allows us to consider models with innovations having

any type of tail-behavior. Our main result provides the joint asymptotic distribution for

all statistics involved in the cointegration model with drift and innovations with possibly

different tail behavior. This is achieved by an extensive use of the modern theory for

stochastic integration. We provide simulation studies for the limiting distributions. Based

on our simulation results for marginal distributions of V3 and V4 , we conclude that one

can construct satisfactory confidence intervals for the unknown parameters β and µ.
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