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Abstract. In this paper, we consider the problem of self-normalization for one rather simple autoregressive
model Xt,s = aXt−1,s + bXt,s−1 + εt,s on a two-dimensional lattice. We show that there is some similarity
between this problem and the corresponding problem for AR(1) time series model.
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1. INTRODUCTION AND FORMULATION OF RESULTS

Nearly a hundred years passed from the famous paper by Gosset [5] written under
the pseudonym “Student,” and now self-normalization is widely used in probability
and mathematical statistics. Let Xi, i � 1, be a stationary mean-zero sequence. Then
one considers the sum Sn = ∑n

i=1 Xi normalized by the square root of the sum of
squares V 2

n = ∑n
i=1 X2

i . In the case of independent and identically distributed (i.i.d.)
random variables, it is justified by the fact that usually good normalization is achieved
by the square root of variance of Sn which is nEX2

1 . Due to the Law of Large Num-
bers, V 2

n is a good approximation for the last quantity. At present, limit behavior (limit
theorems with rates of convergence and asymptotic expansions, large deviations) of
self-normalized sequence V −1

n Sn in the case of i.i.d. is deeply investigated. There is
a large amount of literature, and we refer to [3],[4], [9], [10]. The situation becomes
more complicated for sequences of dependent random variables, and solution of the
problem for general stationary sequences is far from being completed. Some new ef-
fects comparing with i.i.d. case were noticed in [7] for exchangeable random variables.
Recently, in [8], a specific form of dependence was considered, precisely, it was sup-
posed that Xi, i ∈ Z, is AR(1) process obtained as a solution of the equation

Xi = ρXi−1 + εi,

where |ρ| < 1 and εi, i ∈ Z, is a sequence of i.i.d. random variables with Eε1 = 0 and
finite variance. It is well known that, in this case, Xi, i ∈ Z, is a stationary sequence
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which can be expressed as the infinite series

Xi =
∞∑

j=1

ρjεi−j . (1)

In [8], two results are proved. Let us denote by N(a,σ 2) the normal distribution with
mean a and variance σ 2.

THEOREM A [Theorem 1 of [8]]. If Xi, i ∈ Z, is defined by (1) with Eε1 = 0 and
Eε2

1 < ∞, then

V −1
n Sn

D−→N
(

0,
1 + ρ

1 − ρ

)
.

In practice, having only observed values Xi, 1 � i � n, the appearance of the un-
known quantity ρ as a parameter of the limit distribution is unpleasant. One way to
overcome this difficulty would be taking some estimator ρ̂n (for example, the least-
square estimator) and proving that

(1 − ρ̂n

1 + ρ̂n

)1/2
V −1

n Sn

is asymptotically standard normal. However, the authors of the above-mentioned paper
suggested another (to our mind, simpler) approach by taking self-normalization by
blocks. Assuming that n = mN , with both m,N integers, they introduced the random
variables

Yj =
∑

(j−1)m<i�jm

Xi, j = 1,2, . . . ,N,

and

U2
n = Y 2

1 + . . . + Y 2
N.

THEOREM B [Theorem 2 of [8]]. Under the conditions of Theorem A,

U−1
n Sn

D−→N(0,1),

provided that m → ∞ and m/n → 0 as n → ∞.

Juodis and Račkauskas [8] proved some results on self-normalization for more gen-
eral linear processes, but we confine ourselves with these two results, since our goal
is to consider self-normalization for sums of multi-indexed random variables (random
fields). A general problem can be formulated as follows. Let Xk̄, k̄ ∈ Zd , be a sta-
tionary random field, and let Dn be some sequence of increasing (Dn ⊂ Dn+1) finite
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subsets (with growing cardinality) of Zd . Then one is interested in the limit behavior
of the self-normalized sequence

∑
Dn

Xk̄

(
∑

Dn
X2

k̄
)1/2

.

If Xk̄, k̄ ∈ Zd, are i.i.d. random variables, then the problem can be easily transformed
to the self-normalization problem for usual sums Sn only over some subsequences (de-
pending on the cardinalities of sets Dn). But if the random field has some dependence
structure, then the problem is even more difficult comparing with processes, since this
dependence structure (spatial dependence) can be more complicated comparing with
dependence in time series. Another degree of complication is added by sets Dn, and
there can be even interplay between the dependence structure and the form of sets of
summation.

The goal of this paper is rather modest: to generalize above formulated two results
for the simple spatial autoregression model and very simple sets Dn in the case d = 2.
We consider one of the simplest autoregression models,

Xt,s = aXt−1,s + bXt,s−1 + εt,s. (2)

We suppose that εt,s, (t, s) ∈ Z2 are i.i.d. random variables with Eεt,s = 0 and Eε2
t,s =

1. We also assume that |a|+ |b| < 1; this condition guarantees that there is a stationary
solution for (2) which has the expression

Xt,s =
∞∑

k=0

k∑
j=0

(
k

j

)
ajbk−j εt−j,s−k+j . (3)

For integers l1, l2, let us denote γ(l1,l2) = EXt,sXt+l1,s+l2 , where Xt,s is from (2). In
[2] (see also [1]), it is shown that

γ(0,0) := ((1 + a + b))(1 + a − b)(1 − a + b)(1 − a − b))−1/2 ,

γ(−1,1) :=
{

((1 − a2 − b2)γ(0,0) − 1)(2abγ(0,0))
−1 if ab �= 0,

0 otherwise.

Set

σ 2(a,b) = (1 − a2 − b2)(1 − a − b)−2(1 + 2abγ(−1,1))
−1.

Finally, let us denote M̄n = (Mn,1, Mn,2) and

Dn = {(t, s): (t, s) ∈ Z2, 1 � t � Mn,1, 1 � s � Mn,2}.
(In the sequel, we suppress the index n in the notation when there is no danger of
confusion.) Now our first result can be formulated as follows.
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THEOREM 1. If Xt,s is a stationary solution of (2), random variables εt,s satisfy
the above formulated conditions, and min{M1,M2} → ∞ as n → ∞, then

∑
(t,s)∈Dn

Xt,s

(
∑

(t,s)∈Dn
X2

t,s)
1/2

D−→N(0,σ 2(a,b)). (4)

Such a result probably holds for more general spatial autoregression processes

Xt̄ =
∑
k̄∈�

ak̄Xt̄−k̄ + εt̄ (5)

or general linear fields

Xt̄ =
∑
k̄∈Zd

bk̄εt̄−k̄

under some mild conditions on the coefficients ak̄ and bk̄ . Here t̄ = (t1, . . . , td ), b̄ =
(b1, . . . , bd), ā = (a1, . . . , ad), � is a subset of Zd \ 0, εt̄ , t̄ ∈ Zd , are i.i.d. random
variables with mean zero and finite variance. Taking the simple set

�1 = {
i ∈ Zd : 0 <

d∑
j=1

ij � 1, 0 � ij , j = 1, . . . , d
}

in (5), we get the following generalization of Theorem 1 which we formulate without
proof, since it is completely similar to that of Theorem 1, only with a more complicated
expression of variance of limit law.

Denote

Hn = {(t1, . . . , td) ∈ Zd,1 � ti � Mn,i}.

THEOREM 1A. Let a stationary real-valued random field Xt̄ , t̄ ∈ Zd, be defined
by (5) with the set �1 and

∑
k̄∈�1

|ak̄| < 1. Suppose that Eεt̄ = 0, Eε2
t̄

< ∞, and
mini Mn,i → ∞ as n → ∞. Then

∑
t̄∈Hn

Xt̄(∑
t̄∈Hn

X2
t̄

)1/2
D−→N(0,σ 2

ã ).

Here σ 2
ã

is a constant depending on ã = {ak̄, k̄ ∈ �1} and dimension d .

This result shows that the dimension d of the indices is unimportant in the problem
of self-normalization (on the contrary, as is shown in [11], the dimension is very im-
portant considering the growth of variance of a spatial autoregression model with unit
root).
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The dependence of the variance of the limit normal law in (4) is more complicated as
compared with corresponding result in Theorem A. Therefore, the attempt to get rid of
this dependence by estimating unknown parameters a and b does not look promising,
while the approach proposed in Theorem B is attractive. To this aim we divide the set
Dn into smaller rectangles. Assuming that 1 � m1 � M1 and 1 � m2 � M2 are integers
(also depending on n) and such that I := M1m

−1
1 and J := M2m

−1
2 are integers, we

set m1,i := m1(i − 1), m2,j := m2(j − 1), and

Di,j = {
(t, s): m1,i + 1 � t � m1,i+1, m2,j + 1 � s � m2,j+1

}
,

1 � i � I, 1 � j � J.

If we define

Yi,j =
∑

(t,s)∈Di,j

Xt,s,

then, since Dn = ∪I
i=1 ∪J

j=1 Di,j , we clearly have

∑
(t,s)∈Dn

Xt,s =
I∑

i=1

J∑
j=1

Yi,j .

Since the two sums from the last equality will be used several times, we introduce
the notation

∑∗ :=
∑

(t,s)∈Dn

,
∑

∗ :=
I∑

i=1

J∑
j=1

.

THEOREM 2. If conditions of Theorem 1 are satisfied and additionally

min(m1, m2) −→ ∞ and
m1m2

M1M2
−→ 0

as n → ∞, then
∑∗

Xt,s

(
∑

∗Y 2
i,j )

1/2

D−→N(0,1).

2. AUXILIARY RESULTS

In this section, we collected some supplementary results which are used in the proof
of Theorems 1 and 2. To formulate them we need some additional notation. The inner
radius d(G) of a set G ⊂ Zd is defined by

d(G) = sup{r: ∃ c such that B(r, c) ∩ Zd ⊂ G}.
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Here B(r, c) denotes the ball of radius r and center c with respect to ‖x‖∞ =
max1�j�m |xj |.

Let τj , j ∈ Zd , be the translation operator defined on (R)Z
d

by τj (ξ ) = {ξi+j , i ∈
Zd}. Denote by A the σ -algebra of invariant sets of (R)Z

d
: a Borel set A ∈ A if and

only if τj (A) = A for all j ∈ Zd . By T = ξ−1(A) we denote the σ -algebra of invariant
sets of the field ξ. The random field ξ is called ergodic if its σ -algebra T is trivial. For
example, if ξ = {ξi, i ∈ Zd, } are i.i.d. random variables, then ξ a is stationary ergodic
random field. If η = {ηi = g(τi(ξ )), i ∈ Zd}, where g is a measurable mapping from
(R)Z

d
to any measurable space and if ξ is ergodic, then η also is ergodic. The following

result is the law of large numbers for ergodic random fields.

THEOREM C [Theorem 3.1.1 in [6]]. Let X = {Xi, i ∈ Zd } be a stationary real-
valued random field with E|Xi |p < ∞ for some 1 � p < ∞.

(i) Let Gn ⊂ Zd be a sequence of convex and bounded sets such that d(Gn) → ∞.
Then

|Gn|−1
∑
i∈Gn

Xi
Lp−→E(X|I). (6)

Here I is a translation invariant σ -algebra of the process X.
(ii) If additionally Gn ⊂ Gn+1, then convergence in (6) is a.s.

In our proofs, we need the following lemma, which is a corollary of Theorem C.

LEMMA 1 [Corollary 3.1.1 in [6]]. Let X = {Xi, i ∈ Zd} be an ergodic stationary
field, and let g: RZd → R be an integrable function.

(a) If Gn is a sequence of bounded convex sets such that d(Gn) → ∞, then

|Gn|−1
∑
i∈Gn

g(X ◦ τi)
L1−→E(g(X)).

(b) If the sequence (Gn,n � 1) is increasing, then the limit relation holds a.s.

The next two lemmas were proved in [4].

LEMMA 2 [Lemma 2.1 in [4]]. Let r, k,n,m1, . . . ,mr be positive integers such
that 1 � r � k � n, mi � 1 for all i, and m1 + . . . +mr = k. Define nr = [

n
r

]
and s =

#{i � r: mi = 1}. Then, for any set of i.i.d. random variables ξi, i � n, the following
inequality holds:

nr
r

(
k

m1, . . . ,mr

)1/2 ∣∣∣E ξ
m1
1 . . . , ξ

mr
r

(
∑

1�i�n ξ 2
i )k/2

∣∣∣ �
(
E

∣∣∣
∑nr

1 ξi

(
∑

1�i�nr
ξ 2
i )1/2

∣∣∣)s
.
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LEMMA 3. [4]. Let (ξj , j ∈ Z) be a sequence of i.i.d. r.v’s with Eξ1 = 0 and
ξ1 ∈ DAN . Then the sequence

( ∑
1�i�n

ξi

)( ∑
1�i�n

ξ 2
i

)−1/2
, n � 1,

is stochastically bounded and

sup
n

E

∣∣∣
∑

1�i�n ξi

(
∑

1�i�n ξ 2
i )1/2

∣∣∣ < ∞.

Here the abbreviation X ∈ DAN means that X belongs to the domain of attraction
of normal law. Lemmas 2 and 3 are important tools in the proof of our results. We also
use the following theorem from [1].

THEOREM D [Proposition 1.3 in[1]]. Suppose that Xt,s is the process defined by (2)
with |a| + |b| < 1. Then

(M1M2)
−1/2

∑
(t,s)∈Dn

(
εt,sXt−1,s

εt,sXt,s−1

)
D−→N(0,
a,b),

where N(0,
a,b) denotes the two-dimensional normal law with mean zero and the
covariance matrix


a,b =
(

γ(0,0) γ(−1,1)

γ(−1,1) γ(0,0)

)
.

The quantities γ(0,0) and γ(−1,1) were defined before the formulation of Theo-
rem 1. The original formulation of Theorem D in [1] was slightly different from
ours. The result in [1] was actually proved for triangular domains Tn = {t, s: 0 �
t + s, max(t, s) � n}; however, it is easy to see that the same result can be proved for
the domains Dn considered in this paper. One would have to follow the original proof
and make some minor changes.

3. PROOF OF THEOREMS

We start the proof of Theorem 1 by introducing more notation:

χ2
n := ∑∗

ε2
t,s , Rn := |Dn| = Mn,1Mn,2,

Zn := ∑∗
Xt,s, F 2

n := ∑∗
X2

t,s .

Using (2), we have

Zn = a
∑∗

Xt−1,s + b
∑∗

Xt,s−1 + ∑∗
εt,s . (7)
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Since

Zn = ∑∗
Xt−1,s +

M2∑
s=1

XM1,s −
M2∑
s=1

X0,s,

Zn = ∑∗
Xt,s−1 +

M1∑
t=1

Xt,M2 −
M1∑
t=1

Xt,0,

we easily obtain

Zn = (1 − a − b)−1∑∗
εt,s − (1 − a − b)−1R(1)

n . (8)

Then we get

F−1
n Zn = Cn(An + R(1)

n χ−1
n ),

where

An =
∑∗

εt,s

χn
,

R(1)
n = b

M1∑
t=1

Xt,M2 + a

M2∑
s=1

XM1,s − a

M2∑
s=1

X0,s − b

M1∑
t=1

Xt,0,

and

C2
n = (1 − a − b)−2χ2

nF−2
n .

From the classical theorem for the self-normalized sequences we know that

An
D→N(0,1). We will show that χ−1

n R
(1)
n

P→0 and Cn
P→σ(a,b). From these three

relations we shall get (4).

The proof of the fact R
(1)
n χ−1

n

P→0 consists of two parts: the first one is the classical
law of large numbers,

χ2
n

Rn

a.s.−→1, (9)

and the second one is the relation

R
−1/2
n R(1)

n

P−→0. (10)

To prove (10) we use the Chebyshev inequality: for all h > 0,

P
(
|R(1)

n | > hR
1/2
n

)
� h−2E

(
R(1)

n

)2
R−1

n .
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We have

E(R(1)
n )2 = K1 + K2 + K3 + K4,

where

K1 = b2E

( M1∑
t=1

Xt,M2

)2 + b2E

( M1∑
t=1

Xt,0

)2

+ a2E

( M2∑
s=1

XM1,s

)2 + a2E

( M2∑
s=1

X0,s

)2
,

K2 = +2ab

M1∑
t=1

M2∑
s=1

EXt,M2XM1,s + 2ab

M1∑
t=1

M2∑
s=1

EX0,sXt,0,

K3 = −2ab

M1∑
t=1

M2∑
s=1

EXt,M2X0,s − 2ab

M1∑
t=1

M2∑
s=1

EXt,0XM1,s ,

K4 = −2b2
M1∑
t=1

M1∑
t1=1

EXt,M2Xt1,0 − 2a2
M2∑
s=1

M2∑
s1=1

EXM1,sX0,s1 .

Having stationary solution (3), it is easy to estimate the covariances of the process Xt,s

and we use such estimates from [1]:

|γ(l1,l2)| � (1 − (|a| + |b|)−2)−1(|a| + |b|)|l1 |+|l2 | (11)

This estimate of the covariances together with the stationarity of the process allows us
to get the following bounds for all Ki :

|K1| � C(4b2M1 + 4a2M2),

|K2| � C, |K3| � C,

|K4| � C(4b2(|a| + |b|)M2M1 + 4a2(|a| + |b|)M1M2).

From these estimates we get (10).
The last step in the proof of Theorem 1 is the estimation of Cn.
We can rewrite Cn as

C2
n = (1 − a − b)2χ2

nR−1
n F−2

n Rn. (12)

We have (9), therefore, it remains to find a limit for F−2
n Rn.
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We split the quantity F 2
n into four parts:

F 2
n = F (1)

n + F (2)
n + R(2)

n + ∑∗
ε2
t,s ,

where

F (1)
n = a2∑∗

X2
t−1,s + b2∑∗

X2
t,s−1,

F (2)
n = 2ab

∑∗
Xt−1,sXt,s−1,

R(2)
n = 2a

∑∗
Xt−1,sεt,s + 2b

∑∗
Xt,s−1εt,s .

Using the obvious identities

∑∗
X2

t,s = ∑∗
X2

t−1,s +
M2∑
s=1

X2
M1,s −

M2∑
s=1

X2
0,s ,

∑∗
X2

t,s = ∑∗
X2

t,s−1 +
M1∑
t=1

X2
t,M2

−
M1∑
t=1

X2
t,0,

we get

F (1)
n = (a2 + b2)

∑∗
X2

t,s + R(3)
n

and

F 2
n = (1 − a2 − b2)−1

(
F (2)

n + R(2)
n + R(3)

n + ∑∗
ε2
t,s

)
. (13)

Here

R(3)
n = b2

M1∑
t=1

X2
t,0 + a2

M2∑
s=1

X2
0,s − b2

M1∑
t=1

X2
t,M2

− a2
M2∑
s=1

X2
M1,s

.

Due to the stationarity of the process Xt,s we can write

E

M1∑
t=1

X2
t,2 = Mn,1γ(0,0);

therefore,

R−1
n

M1∑
t=1

X2
t,M2

P−→0.

Since all the other summands in R
(3)
n can be dealt in the same way, we get

R−1
n R(3)

n

P−→0. (14)
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Setting g(X) = X0,0X−1,1, from Lemma 1 we find

R−1
n F (2)

n

P−→2abγ(−1,1). (15)

Theorem D implies that R
−1/2
n R

(2)
n

D→N(0, θa,b). The expression of the variance
θa,b = (4a2 + 4b2)γ(0,0) + 8abγ(−1,1)) can be also found from Theorem D. Therefore,

R−1
n R(2)

n

P−→0. (16)

Collecting the obtained relations (12)–(16), we get

Cn
P−→σ(a,b).

Theorem 1 is proved.
Proof of Theorem 2 uses some steps of the proof of Theorem 1. We want to prove

the relation

∑
∗Yi,j(∑

∗Y 2
i,j

)1/2
D−→N(0,1). (17)

The nominator in (17) is simply Zn and, since we already have relations (8) and (10),
it is easy to see that, in order to prove (17), we need to show that

∑
∗Y 2

i,j

Rn

P−→(1 − a − b)−2. (18)

Similarly to relation (7), using the definition of the process (2), we can write

Yi,j = ζi,j + κi,j + ηi,j

and

Y 2
i,j = ζ 2

i,j + κ2
i,j + η2

i,j + 2(ζi,j κi,j + ζi,j ηi,j + κi,j ηi,j ). (19)

Here

ζi,j := (1 − a − b)−1
m1,i+1∑

t=m1,i+1

m2,j+1∑
s=m2,j+1

εt,s,

κi,j := b(1 − a − b)−1
m1,i+1∑

t=m1,i+1

(Xt,m2,j
− Xt,m2,j+1),
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ηi,j := a(1 − a − b)−1
m2,j+1∑

s=m2,j+1

(Xm1,i ,s − Xm1,i+1,s).

We will show that the main input into sum (19) is given by the term ζ 2
i,j , while all

the remaining terms are negligible. From the definition of ζi,j we have the equality

(1 − a − b)2ζ 2
i,j =

∑
(t,s)∈Di,j

ε2
t,s +

∑
(t,s)∈Di,j

∑
(t1,s1)∈Di,j

(t,s)�=(t1,s1)

εt,sεt1,s1 . (20)

Lemmas 2 and 3 give the following estimate for the expectations of summands in (20)
with (t, s) �= (t1, s1): ∣∣∣Eεt,s εt1,s1

χ2
n

∣∣∣ � CR−2
n .

Simple calculations lead to the estimate of the expectation

∑
∗
∣∣∣Eχ−2

n

∑
(t,s)∈Di,j

∑
(t1,s1)∈Di,j

(t,s)�=(t1,s1)

εt,sεt1,s1

∣∣∣ � CIJ (m1m2)
2R−2

n � C
m1m2

Rn

.

This estimate gives us

∑
∗

∑
(t,s)∈Di,j

∑
(t1,s1)∈Di,j

(t,s)�=(t1,s1)

εt,sεt1,s1

χ2
n

P−→0, (21)

and from (20) and (21), taking into account (9), we get

R−1
n

∑
i,j

ζ 2
i,j

P−→(1 − a − b)−2. (22)

Now we estimate the remaining terms in (19). From the definition of κi,j we have

(1 − a − b)2b−2κ2
i,j =

m1,i+1∑
t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j
Xt1,m2,j

− 2
m1,i+1∑

t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j
Xt1,m2,j+1
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+
m1,i+1∑

t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j+1Xt1,m2,j+1 .

The stationarity of the process Xt,s ensures that the expectation Eκ2
i,j is estimated by

the sums of covariances:

∣∣∣E
m1,i+1∑

t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j
Xt1,m2,j

∣∣∣ � 2m1

m1∑
k=0

|γk,0|,

∣∣∣E
m1,i+1∑

t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j
Xt1,m2,j+1

∣∣∣ �
m1∑
t=1

m1∑
t1=0

|γt−t1,m2 |,

∣∣∣E
m1,i+1∑

t=m1,i+1

m1,i+1∑
t1=m1,i+1

Xt,m2,j+1Xt1,m2,j+1

∣∣∣ � 2m1

m1∑
k=0

|γk,0|.

Using estimates of covariances (11) in the same way as in estimating quantities
Ki, i = 1, . . . ,4, we easily get

R−1
n E

∑
∗κ

2
i,j � CIJm1R

−1
n � Cm−1

2 .

From this it follows that

R−1
n

∑
∗κ2

i,j

P−→0, (23)

and in a similar way one can get

∑
∗η2

i,j

Rn

P−→0. (24)

Having relations (22), (23), and (24), the remaining sums of products of ζi,j , ηi,j ,
and κi,j are estimated using the Cauchy inequality; for example,

∣∣∑∗R
−1
n ζi,j κi,j

∣∣ � C
(∑

∗ζ
2
i,jR

−1
n

)1/2 (∑
∗κ

2
i,jR

−1
n

)1/2
.

From (22)and (23) we get

∣∣R−1
n

∑
∗ζi,j κi,j

∣∣ P−→0. (25)

The same relation holds for other two sums. From (22), (23), (24), and (25) relation
(18) follows, and Theorem 2 is proved.
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REZIUMĖ

V. Paulauskas, R. Zovė. Pastaba apie paprasto erdvinio autoregresinio modelio autonormavim ↪a

Straipsnyje nagrinėjamas gana paprasto autoregresinio modelio Xt,s = aXt−1,s + bXt,s−1 + εt,s , apibrėžto
dvimatėje sveik ↪u skaiči ↪u gardelėje, autonormavimas. ↪Irodomos dvi teoremos, apibendrinančiosanalogiškus
[8] darbo rezultatus autoregresinio proceso AR(1) atveju.


