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Abstract

The paper discusses long-memory properties and large sample behavior of partial sums in a
general renewal regime switching scheme. The linear model X, = y, + a,X,—| + 0,6, with
renewal switching in levels, slope or volatility and general (possibly heavy-tailed) i.i.d. noise ¢,
is discussed in detail. Conditions on the tail behavior of interrenewal distribution and the tail
index o € (0,2] of ¢, are obtained, in order that the partial sums process of X is asymptotically
A-stable with index 1<a.
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1. Introduction

A widely used explanation of the long-memory phenomenon in economic and
financial data is regime switching, where the duration of regime has a heavy tailed
distribution. Empirical evidence of heavy tailed regime durations is discussed in
Jensen and Liu (2001) (lengths of the US business cycle’s), Chow and Liu (1999)
(dividend series from the CRSP data), Liu (2000) (daily S&P composite price index).
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Jensen and Liu (2001), Gourieroux and Jasiak (2001) argue that regime switching
with heavy tails may lead to a new forecasting methodology, as an alternative to
ARFIMA forecasting. Various regime switching models leading to the long-memory
property and related econometrical issues were discussed in Parke (1999), Granger
and Hyung (2004), Diebold and Inoue (2001), Liu (2000), Jensen and Liu (2001),
Gourieroux and Jasiak (2001), Leipus and Viano (2003). In particular, Liu (2000)
noted that the Markov regime switching model of Hamilton (1989) with finite
number of states has short memory. On the other hand, simple models with heavy
tailed regime switching of mean are known to exhibit covariance long memory, in the
sense that their autocovariance decays slowly with the lag as (=29 with some
0<d<1/2,see Taqqu and Levy (1986), Liu (2000), Jensen and Liu (2001), Davidson
and Sibbertsen (2002), Mikosch et al. (2002). Leipus and Surgailis (2003a)
established a similar long-memory behavior of autocovariance of random coefficient
AR(1) equation

X,:atX,_1+8, (1.1)

with slope a, performing a heavy tailed regime switching in the interval [0, 1],
including the unit root.

However, autocovariances may carry very limited information for statistical
analysis, especially for hypotheses testing and estimation, which usually require an
asymptotic theory for distributions. Furthermore, an approach based solely on
autocovariances may lead to spurious inferences (Lobato and Savin, 1998). Long-
range dependence (long memory) is often defined to be persistent in the distributional
limit: a stationary time series X, is said to be long-range dependent if its partial sums
process, when suitably normalized, converges (in the sense of distribution) to some
random process with dependent increments, see e.g., Cox (1984, p. 59), Dehling and
Philipp (2002, p. 78). The main conclusion of the present paper is that a large class of
stationary models with heavy tailed regime switching exhibit an increase of variability
and do not exhibit long memory in the distributional limit. Namely, the limit of partial
sums of X, is a stable Lévy process W ,(t) which has infinite variance while X, itself
can have finite variance, and the stability index 0 <4 <2 of the limit process is strictly
less than the tail index o of innovations ¢, in (1.3), see Theorems 2.1, 5.2 and 5.3. The
limit process W ,(t) also has independent increments, which means that the long
memory in X, does not persist in the distributional limit. This fact should be
contrasted with persistent long memory in d-integrated (0<d<1/2) stationary
processes, whose partial sums converge to a d-fractional Brownian motion with
dependent increments (Davydov, 1970). The econometric implication of our result is
that temporal aggregation of models with heavy tailed regime durations can lead to
nonpersistent, although highly leptokurtic, behavior. A similar lack of persistency of
long memory seems characteristic also to some other econometric models, in
particular, to Parke’s (1999) error duration model (see Davidson and Sibbertsen,
2002; Hsieh et al., 2003). See also Davydov (1973) for early probabilistic example of
such behavior.

The class of regime switching models which exhibit the above behavior of partial
sums seems to be very general. The main idea of our approach is the following. Let
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- <8j_1<S;< --- be consecutive moments of regime switches, which follow a
renewal process with a possibly heavy tailed but finite mean interrenewal distribution
U. Under mild conditions, partial sums of the regime switching process X, can be
shown to behave similarly as partial sums of the aggregated process

Yi= > X, (1.2)

S 1 <t<S;

due to the fact that the number of renewal points in large interval [1,n] is
asymptotically proportional to n/u, where p = EU. We assume that the Y;’s can be
written in the product form

Y; = ®,Z;,

characteristic to stochastic volatility models, where ®;>0 (‘aggregate volatility’)
depends on the current regime variables (duration, type) and the previous history,
while Z; (‘aggregate innovation’) is determined by the ‘dynamics’ of X, between the
regime changes. The precise assumptions on ¢@;,Z; are given in Section 2
(Assumptions A;—Aj5). Intuitively, these assumptions say that, as the interval length
U; = S; — S;_1 increases, the r.v.’s ®;, Z; become independent and tend in some sense
to (mdependent) r.v.’s <1'>j0 ZJ0 respectlvely, where <D0 has a heavy tail with some
2 €(0,2), and Z¥ has a tail lighter than 4 (in many cases ZJO is a standard normal
variable). By the well-known Breiman’s lemma (Breiman, 1965), these assumptions
imply heavy tailedness of the product ¢JQZ;), and a A-stable limit distribution of the
partial sums process.

The above set up is illustrated by considering particular cases of the autoregressive
equation

Xi=pu+a X, 1+o0 (1.3)

with renewal switching in levels (y,), slope (a;) and/or volatility (¢;). The main
attention is given to the changes in slope, or the model (1.1). Here, we extend the
results of Leipus and Surgailis (2003a), by considering (i) more general (in particular,
heavy tailed) noise ¢, and (ii) a; switching between 0 and some value 4>1. The
regime corresponding to @, = A>1 can be characterized as exponential growth (or
I(c0) regime in the terminology of Granger (2000)) after which the process drops
back into i.i.d. regime, so that a stationary solution of (1.1) may still exist. Such
random coefficient AR(1) equation can describe periodically collapsible and
restarting bubbles with variance which diverges to infinity exponentially in
corresponding random intervals. The collapsible bubbles’ model was first introduced
in Blanchard (1979) and Blanchard and Watson (1982) for i.i.d. ¢, taking two values
0 and 4> 1. Tail behavior in this model was studied in Lux and Sornette (2002).
Empirical evidence from the US and Hong Kong stock index data and testing
procedures for the existence of bubbles are discussed in Wu and Xiao (2002).

Let us finally note that in the main Theorem 2.1 and its applications to (1.3), the
‘switching mechanism’, or duration distribution U, may have heavy tails, as in the
case of slope @, switching between 0 and 4 = 1, but also may have light (exponential)
tails, as in the case of a, switching between 0 and 4> 1. The heavy A-tails (0</4<2)
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in the partial sums limit arise essentially from A-tails of ‘aggregate volatility’ @;
alone, which does not contradict condition EU < oo.

The plan of the paper is the following. In Section 2, we define renewal regime
switching process and formulate the general result (Theorem 2.1) about A-stable limit
of partial sums. Sections 3 and 4 discuss application of Theorem 2.1 to renewal
switching in levels and volatility, respectively. In particular, our regime switching
volatility model is compared to Liu’s (2000) model. Renewal regime switching in
slope is discussed in detail in Section 5. Proofs are collected in Appendices A and B.

2. Renewal regime switching and a generalization of Breiman’s lemma

By regime switching process we mean a stochastic process X, (t =0, 1,...) whose
evolution (conditional probability) at time ¢ is determined by its past Xy,..., X,
and the value R; of some (vector-valued) process, which is called regime and which
changes its value at random moments. The times and values of regime switches can
occur independently of the process X, (such mechanism is considered in our paper),
or can be dependent on past values of X, (as in threshold models). A rather general
class of regime switching processes is given by recurrent equations X, =
fi(Xo, ..., X:—1; Ry; &), where f,(xo,...,X;—1;);2) are some functions, and ¢ is a
noise process; in the sequel, unless specified otherwise, ¢, will stand for i.i.d. noise
independent of regime process. The econometric literature on regime switching
models and their inference is quite large, see, e.g., Granger and Terdsvirta (1993);
Tong (1990). For various regime switching specifications of model (1.3), see Franses
and van Dijk (2000) and the references therein. A widely used regime switching
scheme is the Markov switching model of Hamilton (1989), in which regime
durations have light (exponential) tails. Some recent models involving heavy tailed
switching mechanism, with applications to econometrics, are mentioned in Section 1.

Let us define more precisely a class of regime processes related to a renewal
process. These are processes R;, taking values in p-dimensional Euclidean space R?,
which change their value randomly and independently at random times S; of a given
renewal process and then keep the value constant until the next renewal time. To give
a formal definition, let (Uy,{;),(U,,{,),... be a sequence of independent vectors,
where U; =1,2,... is the duration and {; € R” is the value of the jth subsequent
regime. Moreover, we assume that random vectors (U;,{;), j =2,3,... follow a
common distribution (U,{) with y =EU<o0. Let Sy =0,S;=U; +---+ U,.

Definition 2.1. We call a renewal regime process a stochastic process R;, t =1,2,...
such that R, = (; for 1 € (S;-1, 5], j = 1,2,....

According to the above definition, regime switch times S; constitute an integer-
valued renewal process with interrenewal distribution U and initial distribution Uj.
The distribution of U is generally different from U; in the case of stationary renewal
process it is given by

PlU, =ul=u '"PlU>u], u=12,....
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The assumption of independence of the sequence (Uj;,{;) helps to avoid
mathematical technicalities, although most of the results below are expected to
hold under suitable weak dependence conditions on the sequence (U}, {;) as well.
On the other hand, our assumptions allow for dependence between components U;
and ;.

A regime switching process X,, t =0,1,... corresponding to a renewal regime
process R; will be called a renewal regime switching process. Let %, be the history o-
field which contains all information about X, and R; up to time s =¢, and let
Yj-1 = Zs,, be the history until the last regime change at random time S;_; + 1.
Denote Nn = max{j : S,<n} the number of renewal points S; in the interval [1,n].
Let Y; be the sum of X,’s in the interval (S;_, S;] as defined in (1.2). All relations
below, involving random variables, conditional probabilities and expectations, are
supposed to hold almost surely (a.s.) and uniformly in j>1.

Assumption A;. The sum Y; in (1.2) can be represented as the product of two
random variables:

Yj=®Z;, 2.0

where @;>0 is a function of the current regime variables (U}, {;) and the past history
9,1 (in other words, @; is measurable w.r.t. the o-field a{U;,{;, 9;_1}).

The representation (2 1) is crucial for our discussion. As was noted in Section 1,
the intuitive meaning of Z; is ‘aggregate innovation’ (i.e., the ‘innovation’ of the
aggregated process Y; in (1.2)) and @®; as ‘aggregate volatility’, the latter being
completely determined by the current regime (its duration, type) and the previous
history up to time S;_;. Representation (2.1) is obviously not unique; a natural
choice of @;, at least in the case when Y; has finite conditional variance
w.r.t. o{U;,{;,%; 1}, is the conditional standard deviation:

@; = Var' (Y| U}, (. 1], (2.2)

If the conditional law [Y;|U;,{;,%; 1] is centered Gaussian, then Z; = D Y ~
N(0,1), implying that Y; of (2.1) is a conditionally heteroskedastlc serles w1th
ii.d. Gaussian innovations Z; and (heavy-tailed) volatility @;, the heavy-tailedness
being a consequence of Assurnption A, below. In some cases, (15 is a simple function
of the current regime variables alone, such as ®; = Uj; in the sw1tch1ng mean example
of Section 3, or @; = {; in the volatility example of Sectlon 4. See also (5.28), (5.31)
for simple expressions of @; in the case of slope switching between 0 and some
nonrandom A>1.

Assumption A,. There exist (nonrandom) constants 0<Ai<2, ¢y>0, C>0, a
(nonrandom) function A(v) — 0 (v — 0) and a r.v. #° >0 such that

P[®" > ul~cou™ (u— 00),  P[@;>ul¥9, 1]<Cu™ (Yu>0) (2.3)
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and such that

E[¢"”|9,_1] — B¢ | < v|"h(v). (2.4)

The first relation of (2.3) implies that the distribution of @° belongs to the domain
of attraction of a totally skewed to the right A-stable law (i.e., a stable law with
stability parameter A and skewness parameter equal to 1; see Samorodnitsky and
Taqqu (1994, p. 13)). Together with (2.4), it implies a similar tail relation for the
conditional distribution:

P[®; > u|¥9; 1]~cou™ (u—> o0), (2.5)

with the same nonrandom ¢y >0 as in (2.3). While condition (2.5) seems close to
(2.3)-(2.4), the latter conditions are technically more convenient for proving limit
theorems.

Assumption A;. There exists a r.v. Z° such that for any fixed K >0

sup |E[e"|®;, %, ] — Ee"? | <ok (), (2.6)

lul<K
where 0g(u) is a nonrandom function such that dx(u) — 0 (4 — 00).

Assumption As is equivalent to weak convergence of the conditional distribution
P[Z;<x|®;,%,_1] to the distribution P[Z°<x] as @; — oco. Typically, ®; — oo
implies U; — oo and vice versa, so that (2.6) says that the distribution of Z; =
<I>j_l Y; tends to some distribution Z° independent of %,_1 as the interval length U;
increases. Under conditional Gaussianity of the law[Y;|U;,{;,%,_1] and the choice
(2.2) of @;, relation (2.6) is obviously satisfied with Z°~N(0,1) and dx(u) = 0.
‘Aggregate innovation’ Z; being often a normalized sum of random variables, Aj
may also entail some form of central limit theorem as the interval length U; — oo, in
which case Z° again may be a normal or stable r.v. However, A3 also applies to the
situations as in Theorem 5.3 (slope switching above the unit root), where Z°,
differently from above, is given by infinite geometric series of noise variables (see
(5.30) below). Let us finally note that a similar but stronger version of Aj is given by
the uniform bound

sup |P[Z;<x|®;,%; 1] — P[Z°<x]| < (D), 2.7)

xeR

where d(u) is a nonrandom function such that d(u) — 0 as u — oo.

Assumption A4. There exist > /1 and a (nonrandom) constant Cy<oo such that
E[ZI"1®;, % 1]+ EIZ°I'< Co.

Moreover, if 1>1 then E[Z;|®;,%;_1] = EZ° = 0.

Assumption A4 implies that Z; have lighter conditional tails as @;. The zero
conditional expectation condition is consistent with the ‘aggregate innovation’
interpretation of Z;, and implies the martingale difference property of Y; (2.1) when
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A=1. In particular, if A>1 and r>2, A3—A4 imply that Z;, j>1 are uncorrelated,
with zero mean and variance uniformly bounded in j.

Assumption As. > X, — Z]ALI Y; = op(n'/%), as n — oo.

Assumption As is the most intuitive of A;—As. By the definition of Y, the
difference of the two sums in As equals > g _,., X, where the number of
summands n — Sy, = Oy(1), see Feller (1971). Therefore this difference is also
bounded in probability under weak additional assumptions on the sequence X,. In
particular, As holds if sup;s, E|Xj|‘S < oo for some 6> 0; see the proof of Corollary
3.1 in Appendix B.

Introduce a Lévy process W (1), T=0 with independent and stationary increments
and the characteristic function

E¢“"® = exp{—tu'lal’w(a/al)}, a€R,

where  o(2) = 571 (x4 ¢-) cos(®) + isgn(z) sin(F)(cy — 1)), i=+~1, and
where

+ =cEBIZ°) ' [(Z2°>0), c¢_ = ¢E|Z°/"1(Z2°<0). (2.8)
Write —gq for weak convergence of finite dimensional distributions.

Theorem 2.1. Let X, be a renewal regime switching process satisfying Assumptions
A17A5, 0<A<?2. Then

[n1]
{nl“ > X, rzo}»md (Wi(0), 20). (2.9)

s=1

As noted in the Introduction, A;—As help to reduce the proof of (2.9) to the
convergence

[n7/u]
{n—‘“ > 7). r>0}»fdd{Wi(r),r>0}, (2.10)
j=1
where @), j>1 and Z, j>1 are both ii.d. sequences, also independent of each
other, Z0 being a copy of Z°, and CDO a copy of ®°. Relation (2.10) follows by the
central hmlt theorem for i.i.d. summands Y? <POZ° provided their distribution
belongs to the domain of attraction of A-stable law with characteristic function

e~ld’wla/lal) The last fact follows from A, to A4 and the classical Breiman’s lemma
(Lemma A.1 below) about tail behavior of the product of two independent random
variables. Therefore, Theorem 2.1 can be considered as a generalization of Breiman’s
lemma for dependent random variables.

Remark 2.1. A natural question in the context of Theorem 2.1 concerns functional
convergence in the Skorokhod space D0, 1], the limit process W ,(r) being a.s.
discontinuous on [0, 1]. It is well-known that the convergence in (2.10) for the
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approximating 1i.i.d. sequence q5j(?ZjQ extends to the convergence in DJ0,1]
(Skorokhod, 1964). As noted by a referee, a stronger approximation assumption, viz.

[n7] [nt/u]

ZX —ZQJOZO

=1

sup n~ /%
7€[0,1]

= op(1), @.11)

together with A;—As, imply the functional convergence in Theorem 2.1, too. On the
other hand, assumption (2.11) seems to be quite restrictive and needs further
investigation in concrete cases. It is also known that the functional convergence in
the commonly used Skorokhod J-topology does not hold for some simple mean
switching models, see Mikosch et al. (2002, p. 33, 40), Pipiras et al. (2004).

3. Renewal regime switching in levels

Consider the simplest stochastic regime switching model
X,Z,th‘i'Sf, (31)

where ¢, is a zero mean stationary process and g, is a randomly switching mean. The
processes u, and ¢ are usually assumed independent. We assume that the mean
process u, is a stationary renewal reward process, i.e.

=, SL1<i<S, (3.2)

where S; is a stationary renewal process with interrenewal distribution U, p =
EU <o0, and {; are i.i.d. random variables, independent of the renewal process S;.
By the independence of y, and ¢,

Cov(Xo, X 1) = Var(0) p, + Cov(eo, &),

where p, = P[S; ¢(0, 7) Vj] is the probability that the interval (0, ¢) is void of renewal
points. It is well-known that for a stationary renewal process, this probability is
given by p, = p 1302 P[U >u). If the tail distribution of U decays as in (3.4) below,
with 4> 1, the probability p, decays as '~ and hence the autocovariance functions
of u, and X, are nonsummable for 1<i<2. More precisely, assuming that the
autocovariance of ¢, decays as o(z'~*), we obtain

Cov(Xo, X )~Cov(pg, p)~cat' ™, ¢y = ¢\Var(()/p. (3.3)

This means that both processes y, and X, have covariance long memory. Related
results can be found in Liu (2000), Jensen and Liu (2001), Davidson and Sibbertsen
(2002).

Asymptotic behavior of partial sums in the renewal mean switching model (3.1)
and in some related models was discussed in Taqqu and Levy (1986), Mikosch et al.
(2002), Pipiras et al. (2004), Davidson and Sibbertsen (2002) and other papers. The
main emphasis of these studies is aggregation, or the possibility of obtaining
Gaussian long-memory process as the limit of an aggregated sum of independent
copies of (3.1). According to the popular idea of Granger (1980), this provides a
possible explanation of observed long-memory property in economic time series.
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If the process ¢, is covariance stationary and short memory, in the sense that its
covariance function is absolutely summable, then >/, & = O,(n'/?). The behavior
of partial sums of X, in (3.1) in the long-memory case is thus determined by the
behavior of sums of y,, ori.i.d. random variables Y; = U,{;. The product form of Y;
suggests using Theorem 2.1 with ®; = U}, Z; = {}, d50 U,Z° = {. A short proof of
the following corollary is given in Appendlx B.

Corollary 3.1. Let X, be a renewal mean switching process defined in (3.1), (3.2), with
interrenewal distribution U satisfying

P[U > u]~ciu™" (u— 00) (3.4)

for some ¢; >0, 1 <A<2, and { satisfying E{ = 0, E|{|" < oo for some r> A. Suppose &,

is a stationary zero mean process whose autocovariance function is absolutely

summable. Then the convergence (2.9) holds, where constants ¢, = ¢\E|{ |“1({>0),
_ = E|{I"I({<0).

A generalization of model (3.1), (3.2) is discussed in Davidson and Sibbertsen
(2002), where (U, {;) form a generally dependent stationary sequence. In the case
when this sequence is i.i.d. (with {; not necessarily independent of U;) and the U;’s
are heavy tailed, they prove a similar result to our Corollary 3.1.

Intuitively, the fact that the limit process in Corollary 3.1 has jumps, can be
explained as follows. Consider the simplest case of mean switching between two
values +1 with equal probablhtles P[C] =+1]=1/2, and let & = 0. Then, the
integrated process Z, X = Zt LMy isa ‘broken line’ with slope %1 on intervals
(Sj-1, S;] where {; = 1. The rescaled partial sums process n -l AZ['" X, is a similar
‘broken line’ but with slope +n'"!/* — 400 on corresponding random intervals
(Sj—1/n, S;/n]. Because of (3.4), almost all of these intervals have length O(m~") but a
few ‘long’ intervals have typical length O(n'/*~"), see Embrechts et al. (1997, Chapter
8.6), which still tends to zero as 4> 1. The increment of the partial sums process on
such ‘long’ interval is proportional to n'~'//n'/~1 =1; in other words, this
increment does not vanish in the limit » — oo but instead becomes a jump in the
trajectory of the limiting process W (7).

4. Renewal regime switching in volatility

Let us discuss regime switching in volatility, or
X)j - O-[St, (41)

where ¢ 1is a stationary process, and o,>0 (‘volatility’) is a regime process
independent of ¢,. To simplify our discussion, we shall consider the case when &, is
1.1.d. noise, with generic distribution &.

Let o, be a stationary renewal reward process similar to (3.2):

o=, S<t<S), 4.2)
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where S, {; satisfy the same conditions as in (3.2), with the only difference that now
{(;>0as.

The model (4.1) was discussed in Liu (2000) in the finite variance case
E{> <00, Ee? <00, Ee = 0 and a heavy tailed duration distribution U. Let

P[U > u]l~ciu™"  (u— o0) 4.3)

for some ¢; >0, f> 1. Exactly as in (3.3), in this case one has Cov(ay, 5,)~c2t' . so
that for 1<f<2 (and Ee2<oo, E{*><o00) the stochastic volatility model (4.1) has
covariance long memory. A similar conclusion is given in Liu (2000, Theorem 2.1).
Under the same conditions, Liu (2000, Theorem 2.2) proved that partial sums
process of X, in (4.1) converges to a Brownian motion, under standard
normalization n'/2.

It is interesting to compare this result with our Theorem 2.1. If we put @; = {;,
' =, Z; =35 s ¢ Assumption A; holds with Z°= U &, E(Z20) =
EUE&? <00 but A, cannot hold with <2, as E®? = E{* < o0.

The following Corollary 4.1 complements the results in Liu (2000), by considering
the case of infinite variance stochastic volatility (4.2). Let

P[C>z]~02z’i (z > o0) 4.4

for some 0 </<2, ¢; >0. By stationarity of the renewal process, the distribution of o,
coincides with { and therefore (4.4) implies Eo? = oo. In view of (4.1), (4.2), Theorem
2.1 naturally applies with

=0, Zi= Y, e (4.5)

S/,] <t<S,’

Corollary 4.1. Let X, be the stochastic volatility model of (4.1), where {; satisfy (4.4),
with some 0<)<2, and where ¢, are i.id., Ele|"<oo for some r>2 and Ee¢ =0
whenever 2=1. Let U,( be independent, EU <oo. Then the convergence (2.9) holds.

See Appendix B for the proof of the above result. Note that it does not require
heavy-tailedness of U nor any other condition on U except u = EU<oo. In this
sense, Corollary 4.1 is not related to long memory in stochastic volatility. Of course,
if we assume long-tailedness of U as in (4.3), the infinite variance volatility model of
Corollary 4.1 will display long memory, in the sense that power series |X,|° = o—f led)?
will have autocorrelations O(t'~#) decaying as in Liu’s model, for any 6 >0 such that
E*°E|e|* < o00. See also Liu (2000, p. 149).

The fact that duration distribution U has no effect (except for the mean EU) on
the limit distribution W ,(7) is in contrast with the results of Sections 3 and 5. It this
sense, models with regime switching in volatility seem to be different from models
with switching of mean or slope. The same lack of effect of U on the limit
distribution occurs also in the finite variance case studied by Liu (2000). As Liu says
on p.149: ... regardless of regime switching and even in a quite peculiar way, we still
have Brownian motion as our limit instead of any jump process...’

Intuitively, the absence of jumps in the limit process of the volatility model with
finite variance can be explained by a similar reasoning as their presence in the
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switching mean model of Section 3. Consider the case of volatility switching between
two values 0<o_<a,. The process S~ , X, = Y% 0,6, on each interval k €
(Sj-1,S;] is a random walk with zero mean and respective variance o2. Therefore

—1/2

nfl/zzgnj X, behaves as random walk normalized by n and its increment on

random interval (S;_i/n,S;/n] of length O(n'/f=1y is of vanishing magnitude
O((n"/P=1)1/%) = o(1), for any >1. In other words, even ‘long’ durations U; =
O(n'/?) between consecutive switches of the volatility cannot produce a jump in the
limit n — oo.

Let us note, finally, that the above reasoning does not apply to the infinite variance
volatility switching model discussed in Corollary 4.1. In that case, jumps in the limit
J-stable process arise from occasional ‘large’ values O(n'/*) of { /'S, similarly as in the
classical central limit theorem for sums of i.i.d. r.v.’s.

5. Renewal regime switching in slope

One of the most interesting cases of stochastic regime switching concerns the slope
coefficient @, in AR(1) model (1.1). General properties of AR(1) equation with
random and/or time-dependent coefficient can be found in Vervaat (1979),
Tjostheim (1986), Brandt (1986), Karlsen (1990), among others. Tong (1990)
discusses various regime switching time series models including (1.1), with a special
emphasis on threshold models. According to the so-called ‘threshold principle’,
regimes are naturally introduced via thresholds, e.g., in the simplest SETAR(1)
model, a, = a“), where s, =j whenever X,_; € SV with (SU)) constituting some
partition of R. In the Markov switching regime model, s, is an outcome of an
(unobserved) finite-state Markov chain independent of ¢, see, e.g., Hamilton (1994,
Chapter 22).

Long-memory properties and asymptotic behavior of partial sums for renewal
regime switching in slope was recently studied in Leipus and Surgailis (2003a),
Leipus et al. (2004). Below, we extend these results and discuss these questions in the
context of Theorem 2.1, in particular, the verification of Assumptions A|—As.

Consider the equation

Xi=a X +e, (5.1

where ¢,t € Z are i.i.d. innovations, and a,,f € Z is a strictly stationary ergodic
process, independent of ¢,, ¢ € Z. A stationary solution of (5.1) is given by the infinite
series

Xi=¢e+ a1 +aa 182+

=&+ & [[ a (5.2)

s<t s<u<t
According to Brandt (1986), the series (5.2) converges in probability if conditions
E loglag| <0, Elog,|eo|<oo, (5.3)
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are satisfied, where log, x = log(x Vv 1). Note the first condition of (5.3) is satisfied if
either P[ag = 0] >0, or P[|ag|<1] = 1 and P[|ay| < 1]>0. The value a, = a of the slope
coefficient determines the current regime of the process X, i.e., in the terminology of
Section 2, a; = R, is the regime process. Correspondingly, one can have three types
of behavior: (1) stationarity, or 1(0) regime 0<a <1, (2) random walk, or I(1) regime
a = 1, and (3) exponential growth, or I(co) regime a> 1.

Note that Theorem 2.1 does not directly apply to X, of (5.2), as the conditional
expectation E[Y;|®;,9,_1] = Zs<SH &E [ZSH <i<s e gy |D; 1} #0 in gen-
eral. On the other hand, Ay and A4 imply E[Y;|®;,9; ] = E[<Dj 12_,|<I),, Y1]=
<I>].‘1E[Zj|cbj, %;_1] =0, for A>=1. Therefore X, of (5.2) need to be centered by
corresponding conditional expectations. For S;_; <<}, let X; = E[X/19,-1, U}, {1,
X? = X, — E[X,|9;_1, U}, (;]. Clearly, the convergence (2.9) follows from

[n7]

n
nN T X0 W), Y X = op(n'/h). (5.4)
t=1

t=1

Theorem 2.1 can be used to prove the first relation in (5.4) while the second one
needs additional argument. Consider the representation (2.1) of ‘centered aggregates’

0 0
Yj = ZS/-_|<r<SvXt' Note

H- Y w Y g 55

Sj- 1<s<S s<t<S
is a weighted sum of random number U; = §; — S;_1 of i.i.d. r.v.’s &, Sj_1 <s<S
with random weights 35, g ;" depending on the current regime a, = {;.
According to our definition of renewal regime process, {;, U; are independent and
therefore the distribution of Y? is completely determined by generic distributions &, {
and U. The choice of the representation Y](.) = ®,;Z; depends on tail properties of . In
the finite variance case 6> = E¢> <00, B¢ = 0, let

&; = Var' P[Y0|UL (. 9], Zj= &' Y7, (5.6)
as in (2.2). Note ¥ ? and @; are independent of ¥;_; and

U;
P =S (G4 )
s=1

depends on the distributions { and U only. Note that at {; = 1 (the unit root), this
conditional variance grows as Ug Indeed, Q?Z =g’ ZY (U= s+ 1) =(UU; +
DQU; + 1)/6)~(c?/3)U}, implying P[®;>ul~P[{; = 1IP[U; > (3u/0*)**|~cou™
with 1 =2f/3, in the case of (5.2) switching between 1(0) and I(1) regimes and
duration distribution P[U,>u]~c1u‘ﬁ (see (4.3)). In some other situations and

especially for nonlinear models, determining the tail index 4 of ‘aggregate volatility’
&; is not so obvious and may present technical difficulty. Another technical problem
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is the control of centering conditional expectations X! for proving the second
relation in (5.4). Leipus and Surgailis (2003a) show that X } actually have short
memory, in the sense that 370, [EX)X!| <00, and therefore 37_, X! = 0,(n'/?) =
op(n'/*) as A<2.

The above mentioned technical difficulties do not arise in the simplest situation
when a, switches between two values: value ¢ =0 and some deterministic value
A>=1. At the moment when «a, assumes value 0, the process X, drops into
i.i.d. regime and ‘forgets’ all previous history. We call such switching mechanism
memoryless regime switching. In this case, sums of X, between consecutive moments
of a, = 0 are conditionally independent random variables, similarly as Y]Q in (5.5).

Let us precise what we mean by memoryless regime switching. Let

<8 <S) <8< S) <8< (5.7)

be an alternating stationary process of successive switching times of the slope
coefficient:

A4 S <1<,

“TYo st<iss, G5
The corresponding regime durations will be denoted by
Uj=S8-S.. U =8-S, (5.9)

Eq. (5.8) implies that X, stays in 1.i.d. regime during time interval [S0 + 1, 5;]. Below
we assume that (UO U ), J€Z is a sequence of i.id. random vectors, while the
components UO, U; N themselves may be mutually independent or dependent. This
alternating regime process fits into Definition 2.1 by putting U; = U0 + U}, e ;= U0
in which case regime between successive moments S; is spe01ﬁed by duratlon U and
Uj = Sj — Sj_l are i.i.d.

In a realistic model, U ,1 and U? could have different distributions and/or
probability tails, because they correspond to different economic situations: the first
one to a period of high economic activity (‘wild fluctuations in stock market’), and
the second one to a usual ‘stabilization’ period. It is quite common that the lengths of
these periods are correlated between themselves: after a long period of high activity,
one should expect a longer period of stabilization and vice versa. One of the simplest
cases of memoryless regime switching in slope is the Blanchard’s bubbles’ model
mentioned in Section 1. In this model, a, are given by

a; = Abt, (510)

where b, is (i.i.d.) Bernoulli process taking value 1 with probability = and value 0
with probability 1 — 7. In such case, generic durations U° and U' are mutually
independent and geometrically distributed with parameters = and 1 — 7, respectively.
A generalization of (5.10) given by a stationary Markov chain taking two values 0
and 4 also yields independent and geometrically distributed U and U', see Example
5.1 below.
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In the engineering literature, the model a, (5.8) with independent durations U°, U’
and 4 = 1 is commonly referred to as an on/off process; see Willinger et al. (1997),
Heath et al. (1998) and the references therein. It models the evolution of an idealized
source which produces data at a constant rate in on state and produces no data in off’
state. It is argued that both on and off times are well modelled by heavy tailed
distributions. In such case, Heath et al. (1998) obtain the precise long-memory decay
of the covariance function of on/off process, using advanced renewal theory
methods. Similar result is obtained in Jensen and Liu (2001). Our model (5.8)
generalizes on/off process by allowing consecutive on and off durations to be
mutually dependent. Asymptotic decay of the autocovariance of (5.8) is discussed in
Leipus and Surgailis (2003b). It is easy to see that marginal probabilities of
stationary process (5.8) are given by

Pla, = Al = w/p,  Plar = 0] = o/, (5.11)

where u; = EU', i =0,1 and u = yy + p,.
Let us turn to the properties of solution of (5.1) with a, defined by (5.8). In such
case, (5.2) becomes

g+ Ag+ -+ AI_SHSSH Sj-1 <t<S§‘),

X, = | 5.12
S S)<1<S;. 6-12)

Write ¢ € DA(x) (0<o<?2) if there exist constants ¢ >0, ¢ + ¢, >0 such that

o

Ple>x]~cfx™ (x > o0), Ple<x]~c, |x|™* (x > —o0) (5.13)

and, moreover, E¢ = 0 whenever o> 1. We also write ¢ € DA(2) if E¢? <oo, E¢ = 0.
Condition ¢ € DA(o) implies that the distribution ¢ belongs to the domain of normal
attraction of ¢-stable law (Ibragimov and Linnik, 1971), in other words,

n
n 'y e—>aZ’, (5.14)
=1

where Z° is a-stable r.v. (0<x<2) and —4 stands for convergence in distribution.

Clearly, if ¢ € DA(2) (0<a<2) then the second condition of (5.3) is satisfied. The
first condition of (5.3) is satisfied as P[ayg = 0]>0, see (5.11). As a consequence, (5.12)
is a (unique) strictly stationary solution of (5.1) with a, from (5.8) (Brandt, 1986).
However, this solution need not have finite variance. A necessary and sufficient
condition for (5.12) to be covariance stationary is given in the following theorem. Let
U' be a r.v. taking values v = 1,2, ... with probabilities P[T' = v] = u7!P[U' >1].

Theorem 5.1. Let ¢ € DA(2). Eq. (5.1) with a, from (5.8) admits a covariance
stationary solution X, defined by (5.12) if and only if

o0
S AP0 > 0] <. (5.15)
v=1
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In this case,

Cov(Xo, X)) = (6%, /A~ Y AP0 =], (5.16)

v=t
where o* = EéZ.

An immediate consequence of the above theorem is the fact that in the case 4>1,
the covariance function of the covariance stationary solution X, from (5.12) decays
exponentially as O(4~"). However, in the case 4 = 1 the solution X, may exhibit
covariance stationary long memory. A similar fact was earlier observed in
Pourahmadi (1988) (see also Leipus and Surgailis, 2003a).

Corollary 5.1. Assume A =1 and ¢ € DA(2). Moreover, assume

P[U'>ul~cu™  (u— o0), (5.17)
where ¢; >0 and >2. Then
Cov(X g, X )~c3t =2, (5.18)

where c3 = cy0* /(u(f — 1)(B — 2)).
Indeed, (5.17) implies

PO >0l = u* Y PIU zul~(ea/) Y uP~(eafm (B — D)ot F.

From this and (5.16), we get

o8 2 o0
Cov(X. X)) = (P /1) 3 PO 20— Z0s S ol s,
v=t v=t

in accordance with (5.18).
The following theorems give conditions for the convergence to a stable limit of
partial sums of (5.12) in the cases 4 = 1 and A4 > 1, respectively.

Theorem 5.2 (Memoryless regime switching between 1(0) and I(1)). Assume A = 1.
Let ¢ € DA(0) (0<a<2) and let condition (5.17) be satisfied, where

I<f<l+a. (5.19)
Moreover, assume that there exist r <o and a constant C < oo such that
E[U°|U" = n]<Ch’ /% p>1. (5.20)
Then the convergence (2.9) to a A-stable Lévy process holds, with
_ o
T 1+a
and the constant ¢y = ¢>(1 + )P0+ in (2.8).

(5.21)

On the intuitive level, the above result can be explained as follows. Let E¢? < oo, or
o = 2. Note that the increment of the process Zlle X, on interval (S;_1, S?] follows
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1(2) (integrated random walk) and its magnitude is proportional to (S? - Si- 1)3/ 2 =
(U})3/2. Therefore increments of nfl/)'Z[t”j X, on ‘long’ intervals (S;_;/n, S?/n] of
length O(n'/f~') have magnitude O®m~"/*(n'/f)/*)=0O(1) (where /. =28/3, sce
(5.21)), which does not vanish as n — oo. Hence occasional ‘long’ durations of the

unit root regime a; = 1 in the model (5.1) give rise to jumps in the limit process
W ,(t), similarly as in the switching mean example of Section 3.

Theorem 5.3 (Memoryless regime switching between 1(0) and I(c0)). Assume A>1.
Let ¢ € DA(2) (0<a<2) and let

P[U' > ul~caw" (4 — 00), (5.22)
where ¢4 >0 and

A <w<]1. (5.23)
Moreover, assume that there exist r <o and a constant C <oo such that

E[U|\U' = n)<CA™, n>1. (5.24)
Then the convergence (2.9) to a A-stable Lévy process holds, with

A=— }ziz (5.25)

and the constant ¢y = c4 in (2.8).

The proofs of these theorems are given in Appendix B. Here we give some
comments on the choice of normalization @; in (2.1). Note that Y; for j>2 can be
split

Yi= > X+ > X=Y;+7Y], (5.26)

Sj1<1<S) Sy <1<S;

where the sum Yj/. = Zs,,1<z<s}’ (e + Ay 4+ + Af—s/‘fl—lgsjil_kl) for fixed U} 0
has the same distribution as (we remind that Sy = 0)

n
T(Anm) =Y (e +Aey + -+ A7 'e)
=1

=+ +Aep 4+ +A+A+--+ A" e (5.27)

From ¢ € DA(x) and the classical central limit theorem it easily follows that in the
case 0<A<I1 the sum (5.27), normalized by (I*+ (1 +A)*+---+(1+A4+---+
A% has a limit o-stable distribution. This explains the choice of o-stable Z°
and

b =dU}), & =dU"), (5.28)
in the proof of Theorem 5.2, where

D)= (14 2%+ -+ n*)"/*. (5.29)
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In the case of Theorem 5.3, i.e.if A>1, it follows from definition (5.27) that
A™"T(A,n) tends in distribution to a r.v. Z° given by the convergent series

Z'=A4-1)"! Z A7g, (5.30)
Jj=0

leading to the choice
& =4V, =4V (5.31)

Clearly, (5.30) need not have stable distribution or even probability density. It is
interesting to note that Z°=4 — A4(4 — 1)"'X,, where X, = - A7 ey is a
noncausal stationary solution of X, = AX,_| +¢,, A>1, and =4 stands for equality
of distributions.

Conditions (5.20) and (5.24) are rather weak. They are needed to verify
Assumption Az (see Appendix B). In the case when U! and U° are independent,
they are automatically satisfied as we assume p, = EU° <oco. More generally, if U!
and U° are dependent, these conditions roughly say that U° cannot grow very fast as
U'=n— .

Conditions (5.19) and (5.23) (more precisely, the upper bound in (5.19) and the
lower bound in (5.23)), combined with the corresponding tail conditions (5.17),
(5.22) on the distribution of on interval U!, seem crucial for J-stable limit behavior of
partial sums of X, (A<a). Examples 5.1 and 5.2 below show that these bounds are
quite sharp. One may expect that if (5.19), (5.23) are violated, partial sums process in
Theorems 5.2 and 5.3 will converge to a a-stable Lévy process (Brownian motion if
a = 2), under usual normalization n'/*.

Example 5.1. Let A>1, ¢ € DA(2) and let @, be a stationary Markov chain with two
states 0 and A and transition probabilities p, and p, of staying in the same state,
0<py,p4<1. Then a, can be represented as (5.8), where durations U? and U,1 are
independent and geometrically distributed:

PIU' =k =(—pap", PIU" =K =(—por "

Then, if p, < A7, the corresponding Markov regime switching process X, has finite
variance and exponentially decaying autocovariance, sce Theorem 5.1, implying
S, X, =0,n"?). On the other hand, if p,>A2, the process X, satisfies
conditions of Theorem 5.3 and 37, X, = O,(n'/*) with A = —logp,/log A<2. It is
interesting to note that for the Blanchard’s model with a; as in (5.10), Lux and
Sornette (2002) obtained the same tail index A for the stationary solution X, itself, in
the case 0 <4< 1 when this solution has infinite expectation E|X;| = oo.

Example 5.2. Let 4 =1, ¢ € DA(2) and let a, be a stationary on/off process with
independent on and off durations U' and U°, where EU® <00 and U! has a discrete
Pareto distribution P[U" = k] = ¢ok~#~! with parameter > 1. Then, if §>3, from
Corollary 5.1 we have Cov(Xy, X,) = O(t~#=?) implying >/, X, = Op(n'/?). On
the other hand, if 1<f<3, Theorem 5.2 implies > ,_, X, = Op(nl/)') with /=
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2B/3<2. Note that in this case Corollary 5.1 yields Var(})_, X;) = O(n*F)
growing faster than O(n?/%).

6. Conclusion

It is well-known that covariance long memory similar to that in I(d) models can
arise from structural, or regime changes with a heavy tailed duration distribution.
Typical examples of models with long memory caused by regime switches is 1(0)
series with heavy tailed switching of mean and AR(1) process switching between 1.i.d.
regime and the unit root. However, unlike their second order properties,
distributional properties of regime switching models with long memory seem to be
very different from I(d) models: the latter models generally lead to a Gaussian but
strongly persistent asymptotic process (fractional Brownian motion), and the former
models to a heavy tailed stable process with independent increments.

We introduce a class of general regime switching models whose natural temporal
aggregates between regime switching times have a characteristic stochastic volatility
representation, with ‘aggregate volatilities’ largely determined by current regime
variables (duration and type) and following a heavy tailed distribution, while
‘aggregate innovations’ are essentially independent of regime variables and have
relatively light distribution tails. It is shown in the paper that the partial sums
process of such stationary regime switching models converges to a stable Lévy
process with independent increments. The intuitive meaning of the last result is that
the covariance long memory of regime switching model does not persist in the
distributional limit but instead ‘transforms into excess variability’. Our results also
apply to regime switching models with infinite variance.
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Appendix A. Proof of Theorem 2.1

The following lemma is commonly attributed to Breiman (1965); see e.g. Pipiras
et al. (2004, Lemma 1.1).

Lemma A.1. Let @°>0 and Z° be independent random variables such that P[®° > u]~
cou*, (u— 00) for some cy, +>0, and E|Z°|"<oo for some r>J. Let Y° = ¢°Z°.
Then

2

P[Y’>x]~c x™* (x = 00), P[Y'<x]~c_|x|™* (x > —o0),

where ¢y, c_ are given by (2.8).
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Proof of Theorem 2.1. We shall prove the convergence of one-dimensional
distributions at t =1 only. For simplicity of notation, put u = EU = 1. With
Assumption As in mind, it suffices to show

N)I
n N Vi g WD), (A.1)
i=1
We split the proof of (A.1) into three following steps.
Step 1: Approximation of the sum Zfil Y; of random number N, of summands
by the sum ) i, Y, in the sense that

N, n
=S¥ - 3 V= o), (A2)
i=1 i=1

Step 2: Approximation of 377, ¥; by 377, YO where the Y? cDOZO j=1 are
i.i.d. as in (2.10), in the sense that for each iJ e [RE '

‘Eeivn—l//‘. Z;’:I Y; . Eeivn—l/i«z;;l Y? — 0(1) (A3)

Step 3: Application of Lemma A.1 (proof of (2.10)).

We start with (the most difficult) Step 2, or the approximation of a sum of
dependent r.v.’s Y; by a corresponding sum of independent r.v.’s Y?, in distribution.
To that end, we need (i) to approximate the conditional distribution of each
summand Y; by (unconditional) distribution of Y?, in the sense which is explained
below, and (ii) to extend the approximation from summands to sums. For (i), we use
the telescoping argument popular in the probability theory. We recall that the idea of
telescoping is to replace summands consecutively one by one, so that each time we
need to compare two sums which differ by only one summand. For (ii), Assumptions
A>—Ay are used to show that the conditional distribution tails of Y; and Y ? = (D?Z?
coincide, more precisely, that

Awy=[E[e — 7719 ]| <o (0) = o(lel) (A4)

with a (nonrandom) 5(v) — 0asv— 0.
To prove (A.4), write A(v)<A4,(v) + 42(v), where

Ay(0)=[E[Ele"™ 7 — "y, 9, 1119, |, aaoy=|E[e" — &g .
Choose a large K >0, then Al(v)éz;; A1i(v, K), where

An(v.K) = [E[EE"7 = &7 |y, 9 (K™ <10l <K)I9,- |

An(o, K) = [E[E["*% — &% |0y, 9, 110l <K 1%,

(o, K) = [E[E[e"®2 — "% |y, 9, 1]1(0|0;> K)|% 1 ||
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Since [E[¢"®Z/ — &% |d;,%;_,]| <2, using (2.3) we obtain

A13(v, K)<2P[®; > |v| "' K|%;_1]< CJo|* /K7, (A.5)
J J

where C <oo is a nonrandom constant.

Next, consider 41,(v, K). We shall use the following well-known fact: for any
0<r<2 and any r.v. ¢ (for 1<r<2, assume E¢ =0 in addition), the following
inequality holds: for any real number u

|Ee™ — 11<3min(1, [u|"E|&]"). (A.6)
Using (A.6), Assumptions Aj, A4 and integration by parts, we obtain

Ana(o, K)< ClolE| @ (ELZ; |07, %11 + EIZYT ) (10l <K )|

<C|v|"E{@;I(|v|¢j<1<—1)|gj,l}
o] K1

= — C|U|r/ u"dP[(Pj>u|§5j,1]
0

= cw(- lo| "K~"P[®;>v ' K19, 1]

o] K
+r/ P[®;>u|%; 1]~ du
0

o]~ K .
<C|U|’/ ui‘flf/» du
0

<Clo)* /K. (A.7)

By (A.5), (A.7), sup, <, |v|*(412(v, K) + 413(v, K)) can be made arbitrarily small by
choosing K large enough. Then (A.4) follows for 4,(v) if we show for any K <oo

lim lv| 411 (v, K) = 0. (A.8)

Let 6;,>0 be an arbitrary small number and let 6 = 5,K*. Given ¢ and K, by
Assumption Aj one can find L = (K, d)>0 such that

sup |E[ei”Zf
lu|l <K

holds on {®;>L}. Clearly, on the set (K'< |v|®; <K} we have

(15j,%j_1]—Eei“Z? = sup ‘E[ei”zf — e TP, Y, 1]‘<5
Jul <K

’E[ei”‘pfzf — "7 9, 4,11/ < sup ’E[ei“Z/ AT ]’ <5 (A.9)
lul<K

provided |v|<1/(KL). Consequently, if |v]<1/(KL), where L = L(K,J) is defined
above, by (A.9) and Assumption A; it follows that
A1 (0, K)<OPK ™! < 0] 9| %;1]
= OP[@; > K~ 0|79, 1< CoK |ul* = Cd v,
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implying lim sup,_, [v|~*41;(v, K)< C;. By arbitrariness of 4, >0, this proves (A.8)
and hence (A.4) for 4,(v).
Let us prove (A.4) for 4,(v). By A,

Ar(v) = ' / E( % — ¢l 1| F s, )P[Z° € dz]

< / luz|*h(vz)P[Z° € dz]
= [W"EIZ°[*h(vZ°) = [v]*h"(v),

where 7°(v):=E|Z°|*h(vZ") — 0 as v — 0 by the dominated convergence theorem.
This completes the proof of (A.4). ‘
Let us prove (A.3). Denote W,:=n""* 37" | Y, Wy=n""*Y"0 | Y]

k n
Wox=n""* (Z Yi+ > Y]Q),
j=1 J=k+1
so that W, = W,, and W0 = W,yo. Then by telescoping identity,
EeiuW,, _ EeluW (EeluW,,,, EeiuW,w,l) 4t (EeiuW,“ _ EeiuW,,ﬁ()) .

Using the fact that Y;, j<k—1 are %;_; measurable while Yj(-),j<n are
independent of ¥, one can write

Ee“Wnk — EeltWni-1
— - k=1 L
e”’" (Z/ ! J+Z/ kel /) _ Ee'“n / (Zj:l Vit ik yj)
070
77

WS Y e —y— VA @070
=E{e Zj:l JE[e!" Yi _ olun Yk|gk—1] Ee Zj:kﬂ .

By (A.4), uniformly in k, for any fixed u

|E€iuW""k _ EeiuW”’kfl | <E E[eiunfl/;’ Y _ eiunfl/”‘ Y2|gk71]‘
—1/2\A -1
= o((n™"*)") = o(n™).

Consequently, for any u, we obtain |Ee™" — Eei“W2| =no(n~") = o(1), or (A.3).
To complete the proof of Theorem 2.1, it suffices to show (A.2), or Step 1, as Step
3 follows by Lemma A.l. For any 01, 9, >0 one has

P[|0,1>d1n"/<P[IQ,|>d11n"*, (1 — 32)n< N, <(1 + d2)n]
+ P[IN,, — n|>dn] =: ri(n) + ra(n).

By the law of large numbers, for any § >0, d, >0 one can find ny such that ry(n) <9,
Vn>ny. It suffices to show that for any given J, d; >0 one can find §, = 9,(5,0,)>0
small enough so that for all n

r1(n)<o. (A.10)
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Due to the fact that A;—Ay4 hold uniformly in j, this follows from

k
k(n, 6,)=P l sup

1<k<don

Y, >51n1/’~1 <0. (A.11)

J=1

Consider first the case 1<.<2. Note (Y;,%;);., is a martingale difference by
Assumption Ay. Let ¥;=&;Z;, where

- (Dj if @anl/l,
@j:: .
0  otherwise.

Then (¥;,%)),, is again a martingale difference sequence. Then

k
Kx(n,07) = P| sup Yj|>0n"/* @, =& forall 1</< 5211]
I<k<dmn j=1
k ) -
+ P| sup Yj|>0n'/*; @;#®; for some 1<j<dmn
1<k<dn =1
k - bl -
<P| sup Y| >0n"/*| + P[@;#®; for some 1<j<dan]
1<k<on =1

=K1(n, 92) + K2(n, 62).

By Doob’s inequality for martingales, for any A<r<2,
[021]
> ¥
=1

where, using A, and A4, similarly as in (A.7),

g [621]

K1(n,8,) < Co7'n"*E

We thus obtain xi(2,0,)<C80;". Similarly, by Aj, om0 <Y
P[®; >n!'/"1< C8,. Therefore x;(n,d,), i = 1,2 can be made arbitrarily small by an
appropriate choice of ¢, uniformly in n. This proves (A.11) and (A.10) for 1>1.
Case 0 <A< follows by a similar argument and using the simple triangle inequality
in L" (r<1) instead of Doob’s inequality. [

Appendix B. Other proofs

Proof of Corollary 3.1. We apply Theorem 2.1 with Y; = U;{;, ;= U, Z; =,
= U, Z° = {. By independence of U j» ¢ and relatlon (3.4), A|—-Aj; are tr1v1a11y
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satisfied, with A(u) = é(u) = 0. Assumption A4 follows from E|{|"<oo, E{ = 0. It
remains to verify As. More generally, assume sup,>1E|X,|5<oo for some 0<d<1
(for X, in (3.1), this assumption is clearly satisfied with 6 =1, as
E|X,|<E|l{| + El¢g|<o0). Let V, denote the difference of the two sums in As,
Le. V=3, <i<uX: Forany K,L>0 one can write

P[|V,|>K]<P[n—N,>L]+P

Z |X,|>K].

n—L<t<n

As n— Sy, = Op(1), see Feller (1971, Chapter 11, Example 10), the first probability
on the r.h.s. can be made arbitrary small by taking L large enough. The second
probability on the r.h.s. does not exceed K“sE(Z,Hk,@ 1X,0)° <
K0 Y on—L<i<n E|X,|°, for arbitrary 0 <d< 1. Therefore this probability is less than
CLK°<L™!, for some constant C independent of n and K = (CLz)l/‘s. Hence V,, =
Op(1), thereby proving As. [

Proof of Corollary 4.1. For @;,Z; defined in (4.5), A; follows by definition, A,
follows by tail condition (4.4), A; is immediate with Z° = ZU &, and As can be

i=1

proved as in the proof of Corollary 3.1 above, as E|X,|° = E{°E|¢l’ < oo for 6>0
small enough. Finally, A4 follows easily by the independence of U and ¢;:

U r

P

i=1

E|Z;|"=E|Z°" = EE U|<2E — 2EUE|¢|'<o0. [

U
> Elal’

i=1

Proof of Theorem 5.1. Let us first give a rigorous construction of a stationary
process (5.7) with a given joint distribution (U°, U") (for mutually independent U°
and U', this construction is given in Heath et al. (1998)). Let U=U"+ U', EU =
DU = o+ 1y, and let

e <S<0<Sy<Si< - (B.1)

be a (double-sided) stationary renewal process with interarrival distribution U. The
well-known construction of (B.1) starts with a joint distribution of the pair (S_;, Sp):

P[So=u,S_| = —U]::/flP[U =u+v], u=0,1,...,0v=12,... (B.2)

and an i.i.d. sequence U;, j#0, independent of (S_;,Sp) and distributed according
to U. The moments S;,j#0, —1 are then defined by

e S0+ZJ1-(=1U]' j=1’2>"" (B3)
s -t Uy =23, '
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Let U}, J € Z be conditionally independent given S;, i € Z defined as above, and
distributed according to the same (conditional) probability

PlU; = k|S; = s;,i € Z}=P[U' = k|U = s5; — 5;_1]
=PU' =kIU"+ U' =5, — 5;1], (B.4)
k=12,...,5i—s-1—1, je Z Put S;’::Sj + U}, j € Z. From stationarity of (B.3)
and (B.4) it easily follows stationarity of (5.7) and (5.8).

To prove the theorem, let ¢ = 1, for simplicity. Consider the stationary solution
X, as given by (5.2). This solution has finite variance if and only if (see Pourahmadi,
1988) > Ela3 . ..a* ] <oo. Clearly,

El@}...d )= A"Plag=---=a_, = A]
= A TP[S_ < —u, S)=0]
=A™ N PIS_ =5.1,5 = s5,5)>0].

S_1 <—u,50>0

According to (B.2)—~(B.4),

P[S_; = s_1,S0 = 50, S)=>0]
=P[S_| =5_1,S0 = 50]P[S) =0|S_1 = 5_1,Sp = 50]
=1 "PU =59 — s IP[U' > — 5_1|U = 50 — 5_1]
= '"P[U =59 —s5_1,U'> —s_1].

Therefore,

Z P[S_; = 5_1,S0 = 50, S =>0]

S <—u,50>0

=" > PU=s—s51,U'>—s]

s <—us9>0

=u' Y PU'> s

s <-u

= (i /wP[T" >u]

and we obtain S°%° E[@3...a%,] = (u, /)3, A¥P[T' >v], thereby proving the
first part of the theorem.
In a similar way,

o0
EXoX; = Ela;...a1] + Z Ela, . ..alaﬁ .at)
u=0

=A'Pla, = - =a; = A]

=)
+ ZAIJrZquZP[at:,,,:al =qaqy="--- :a_uzA]
u=0
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= (/) A’ <P[U‘ >+ iszP[Ul >+ v])
v=I

= (i /mA™ Y AP0 =)

u=t
Theorem 5.1 is proved. [

Proof of Theorem 5.2. Let ¢, @ be defined as in (5.28), (5.29). Note
d(n)~n19/%(1 + 2)~/*, therefore from (5.17)

P[®° > x]~P[U" > (1 + o)/ x4/ 1D eox ™ (x > o0),
where ¢y = ¢o(1 + oc)fﬁ/ (42 Whence, Assumption A; follows, with A(u) = 0.

Let us verify Aj;. To that end, split Y; = Y} + Y}’ as in (5.26). Clearly,
distributions of Y]’-, Y]’-’ depend on U!, U](-) and do not depend on ¥,_;, moreover,
Yi=3s, <r<st(t = Sj-1)er and Y= Zs?«gs, ¢, are conditionally independent
given @;. Using stationarity of the renewal process and the fact that @, — oo is
equivalent to U/1 — 00, Az follows from

E[exp{iud(n)~' Y (U U' = n] — 1, (B.5)
Elexpliu®(n)”' Y(U)}|U" = n] — EeZ’, (B.6)
where

Y'(n) = Z ke, Y'(n) = Z &.
k=1 k=1

Relation (B.6) is equivalent to the convergence > r_, buer—aZ" of weighted sum of
iid. r.v.’s &, with weights b, :=®(n)"'k satisfying S>}_, 5% =1 (see the definition
(5.29) of &(m)). Then (B.6) follows from assumption ¢ € DA(x) and standard
probabilistic argument (Araujo and Giné, 1980, Theorem 2.3.5).

If U° and U' are independent, (B.5) is obvious by Y”(U”) = Op(1) and o) -
0. On the other hand, if U’ = G(U") is some function of U', then (5.20) implies
G(n) = O /%) and Y"(U°) = O,((U*)/*) = O (" 1+9/%") = o,(P(n)) on the set
{U" = n}, due to ®&(n) = O(n'+?/*) and r<a. In the general case, in order to prove
(B.5) we need to show that for any € >0

I(n,€)=P[|®(n)"' Y"(U")|> € |U' =n] - 0
as n — oo. For any k>1 (which will be chosen later), we can write
J

d(n)~! Z &g

s=1

>e,U'=j|lU =n

k
I(n,€)< Z P
J=1

+ P[U°>k|U" = n]=1, + I.



324 R. Leipus et al. | Journal of Econometrics 129 (2005) 299-327

Using the independence of (U°, U') and ¢, 1 <t<n,

P .
Il — Z P[@(ﬂ)ljl/a}jl/a zj: &

j=1 s=1

> e|U’=j,U"' =n|PU° =/|U" =n]

> €.
I<j<k —1

J
< max Plfp(n)_lkl/“P_l/“ Z &

Now, since @(n)~n+/* and j=1/*$V_ & = O,(1), see (5.14), therefore I, — 0 if k
is chosen so that q?(n)"kl/ * — 0. In particular, one can choose k = n'+*~7 with some
y>0. With this k£ and using (5.20), we obtain

I, = P[UO >k| Ul — n]gnflfahu,‘E[UO' Ul — n]< Cn—lfoc+y+r(1+a)/ac >0
provided y>0 was taken small enough (y<(1 + a)(1 — (r/a)) ). This proves (B.5)
and Aj.

Let us verify A4. Similarly as in (B.5), (B.6), it suffices to show J'<C, J'<C, for

J=0om)EY'(UN'U" =nl,  J"=@@E[Y"(U)'|U" = 1] (B.7)
and some A <r<a. For J”, by applying Marcinkiewicz—Zygmund moment inequality
and (5.20), we get

J// < @(n)—rE|81 |rE[U0| Ul — n]< Cn—r(l+a)/u+r(1+a)/ot — C

The estimate J'< C follows from the bound P[®@(n)~'|Y'(n)|>x]< Cx™* of the tail
distribution function of weighted sum dS(n)*1 Y'(n) = > "p_, burer of L.i.d. r.v.’s g; see
Mikosch and Samorodnitsky (2000, Lemma A.4). This proves Assumption A4 and
Theorem 5.2. 0O

Proof of Theorem 5.3. As in (5.31), let @, = AU/!, ® = 4Y", Clearly, @; is
independent of the past history %,_; and has the same distribution as @, Condition
(5.22) easily implies

P[@°>x] = P[U' > log x/ log A]~c3w'o8~/ 1084 — ¢x*

as x — oo, where 4 is defined in (5.25). Whence A; follows, with A(u) = 0.
To verify Asj, it suffices to show that for each u € R

E[eiuZ/|U} — > B a5 n— oo, (B.8)

where r.v. Z° is defined in (5.30). Similarly as in the proof of Theorem 5.2, this
follows from

Elexpfiud™V Y'(UOWMU' = n] — 1, (B.9)
Elexpliud~Y Y(U"|U' = n] — Ee“Z’, (B.10)

as n— oo, where Y'(n)=e,+(1+ Agp_1 +---+(1+A+---+A4"De, Y'(n)=
e+t &
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To show (B.9), as in proof of Theorem 5.2 we write I(n, €):=P[4~"|Y"(U%)|> €
|U' = n] <I, + I, where

k J
Li=) PlA™")) &|> e U'=j|U" =n|, L=PU">k|U" =n)
j=1 s=1

Similarly as in the proof of Theorem 5.2, it follows easily that /; — 0 provided
A7"k'Y* - 0, and we can choose k= A™n"'. Then, using condition (5.24),
L <k 'E[U°|U" = n]<CA™™nA" = CnA~"*"" — 0, thus proving (B.9).

To prove (B.10), write

ATY' () =A7"(A = 1)) (4 = D
i=1

n—1 n—1
=4(4 = 1) Z Al —(A—-1)7t4™ Z ¢ =2"—R,,
i=0 i=0

where R,=(4 — 1)7' S22 A7+ (4 — 1)' A" 37"} &.. Using 4> 1 and & € DA(a),
R, = 0,(1) easily follows, thereby implying (B.10).
It remains to verify Assumption Ay, or J'<C, J'<C, where

J=AT"E[|Y' ()], J"=AT"E[Y"(U°)'|U" = n]

for some 1<r<a, cf. (B.7). Using the fact that ¢ € DA() implies E|¢|" <oo for any
0<r<a<2as well as the inequality E|Y ;| a;&;|" <2, |a;|"Ele;|"” which is valid for
any 0<r<2, we obtain

n n n
J<C|Y A7Elal"+ 4™ Y Elal” | <C| Y A"+ A4 <C.
i=1 i=1 i=1

Finally, using (5.24)

U()
J'<CA™E|Y  Elg|'|U' =n| <CAE[U°|U" = n]<C.

i=1

This completes the proof of Theorem 5.3. [
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