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Abstract

The paper discusses long-memory properties and large sample behavior of partial sums in a

general renewal regime switching scheme. The linear model X t ¼ mt þ atX t�1 þ stet with

renewal switching in levels, slope or volatility and general (possibly heavy-tailed) i.i.d. noise et

is discussed in detail. Conditions on the tail behavior of interrenewal distribution and the tail

index a 2 ð0; 2� of et are obtained, in order that the partial sums process of X t is asymptotically

l-stable with index loa:
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1. Introduction

A widely used explanation of the long-memory phenomenon in economic and
financial data is regime switching, where the duration of regime has a heavy tailed
distribution. Empirical evidence of heavy tailed regime durations is discussed in
Jensen and Liu (2001) (lengths of the US business cycle’s), Chow and Liu (1999)
(dividend series from the CRSP data), Liu (2000) (daily S&P composite price index).
see front matter r 2005 Elsevier B.V. All rights reserved.
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Jensen and Liu (2001), Gourieroux and Jasiak (2001) argue that regime switching
with heavy tails may lead to a new forecasting methodology, as an alternative to
ARFIMA forecasting. Various regime switching models leading to the long-memory
property and related econometrical issues were discussed in Parke (1999), Granger
and Hyung (2004), Diebold and Inoue (2001), Liu (2000), Jensen and Liu (2001),
Gourieroux and Jasiak (2001), Leipus and Viano (2003). In particular, Liu (2000)
noted that the Markov regime switching model of Hamilton (1989) with finite
number of states has short memory. On the other hand, simple models with heavy
tailed regime switching of mean are known to exhibit covariance long memory, in the
sense that their autocovariance decays slowly with the lag as t�ð1�2dÞ; with some
0odo1=2; see Taqqu and Levy (1986), Liu (2000), Jensen and Liu (2001), Davidson
and Sibbertsen (2002), Mikosch et al. (2002). Leipus and Surgailis (2003a)
established a similar long-memory behavior of autocovariance of random coefficient
AR(1) equation

X t ¼ atX t�1 þ et (1.1)

with slope at performing a heavy tailed regime switching in the interval ½0; 1�;
including the unit root.

However, autocovariances may carry very limited information for statistical
analysis, especially for hypotheses testing and estimation, which usually require an
asymptotic theory for distributions. Furthermore, an approach based solely on
autocovariances may lead to spurious inferences (Lobato and Savin, 1998). Long-

range dependence (long memory) is often defined to be persistent in the distributional
limit: a stationary time series X t is said to be long-range dependent if its partial sums
process, when suitably normalized, converges (in the sense of distribution) to some
random process with dependent increments, see e.g., Cox (1984, p. 59), Dehling and
Philipp (2002, p. 78). The main conclusion of the present paper is that a large class of

stationary models with heavy tailed regime switching exhibit an increase of variability

and do not exhibit long memory in the distributional limit. Namely, the limit of partial
sums of X t is a stable Lévy process W lðtÞ which has infinite variance while X t itself
can have finite variance, and the stability index 0olo2 of the limit process is strictly
less than the tail index a of innovations et in (1.3), see Theorems 2.1, 5.2 and 5.3. The
limit process W lðtÞ also has independent increments, which means that the long
memory in X t does not persist in the distributional limit. This fact should be
contrasted with persistent long memory in d-integrated ð0odo1=2Þ stationary
processes, whose partial sums converge to a d-fractional Brownian motion with
dependent increments (Davydov, 1970). The econometric implication of our result is
that temporal aggregation of models with heavy tailed regime durations can lead to
nonpersistent, although highly leptokurtic, behavior. A similar lack of persistency of
long memory seems characteristic also to some other econometric models, in
particular, to Parke’s (1999) error duration model (see Davidson and Sibbertsen,
2002; Hsieh et al., 2003). See also Davydov (1973) for early probabilistic example of
such behavior.

The class of regime switching models which exhibit the above behavior of partial
sums seems to be very general. The main idea of our approach is the following. Let
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	 	 	oSj�1oSjo 	 	 	 be consecutive moments of regime switches, which follow a
renewal process with a possibly heavy tailed but finite mean interrenewal distribution
U. Under mild conditions, partial sums of the regime switching process X t can be
shown to behave similarly as partial sums of the aggregated process

Y j ¼
X

Sj�1otpSj

X t, (1.2)

due to the fact that the number of renewal points in large interval ½1; n� is
asymptotically proportional to n=m; where m ¼ EU : We assume that the Y j’s can be
written in the product form

Y j ¼ FjZj,

characteristic to stochastic volatility models, where Fj40 (‘aggregate volatility’)
depends on the current regime variables (duration, type) and the previous history,
while Zj (‘aggregate innovation’) is determined by the ‘dynamics’ of X t between the
regime changes. The precise assumptions on Fj ;Zj are given in Section 2
(Assumptions A1–A5). Intuitively, these assumptions say that, as the interval length
Uj ¼ Sj � Sj�1 increases, the r.v.’s Fj ; Zj become independent and tend in some sense
to (independent) r.v.’s F0

j ; Z0
j ; respectively, where F0

j has a heavy tail with some
l 2 ð0; 2Þ; and Z0

j has a tail lighter than l (in many cases, Z0
j is a standard normal

variable). By the well-known Breiman’s lemma (Breiman, 1965), these assumptions
imply heavy tailedness of the product F0

j Z0
j ; and a l-stable limit distribution of the

partial sums process.
The above set up is illustrated by considering particular cases of the autoregressive

equation

X t ¼ mt þ atX t�1 þ stet (1.3)

with renewal switching in levels (mt), slope (at) and/or volatility (st). The main
attention is given to the changes in slope, or the model (1.1). Here, we extend the
results of Leipus and Surgailis (2003a), by considering (i) more general (in particular,
heavy tailed) noise et; and (ii) at switching between 0 and some value A41: The
regime corresponding to at ¼ A41 can be characterized as exponential growth (or
I(1) regime in the terminology of Granger (2000)) after which the process drops
back into i.i.d. regime, so that a stationary solution of (1.1) may still exist. Such
random coefficient AR(1) equation can describe periodically collapsible and
restarting bubbles with variance which diverges to infinity exponentially in
corresponding random intervals. The collapsible bubbles’ model was first introduced
in Blanchard (1979) and Blanchard and Watson (1982) for i.i.d. at taking two values
0 and A41: Tail behavior in this model was studied in Lux and Sornette (2002).
Empirical evidence from the US and Hong Kong stock index data and testing
procedures for the existence of bubbles are discussed in Wu and Xiao (2002).

Let us finally note that in the main Theorem 2.1 and its applications to (1.3), the
‘switching mechanism’, or duration distribution U, may have heavy tails, as in the
case of slope at switching between 0 and A ¼ 1; but also may have light (exponential)
tails, as in the case of at switching between 0 and A41: The heavy l-tails ð0olo2Þ
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in the partial sums limit arise essentially from l-tails of ‘aggregate volatility’ Fj

alone, which does not contradict condition EUo1:
The plan of the paper is the following. In Section 2, we define renewal regime

switching process and formulate the general result (Theorem 2.1) about l-stable limit
of partial sums. Sections 3 and 4 discuss application of Theorem 2.1 to renewal
switching in levels and volatility, respectively. In particular, our regime switching
volatility model is compared to Liu’s (2000) model. Renewal regime switching in
slope is discussed in detail in Section 5. Proofs are collected in Appendices A and B.
2. Renewal regime switching and a generalization of Breiman’s lemma

By regime switching process we mean a stochastic process X t ðt ¼ 0; 1; . . .Þ whose
evolution (conditional probability) at time t is determined by its past X 0; . . . ;X t�1

and the value Rt of some (vector-valued) process, which is called regime and which
changes its value at random moments. The times and values of regime switches can
occur independently of the process X t (such mechanism is considered in our paper),
or can be dependent on past values of X t (as in threshold models). A rather general
class of regime switching processes is given by recurrent equations X t ¼

f tðX 0; . . . ;X t�1;Rt; etÞ; where f tðx0; . . . ;xt�1; y; zÞ are some functions, and et is a
noise process; in the sequel, unless specified otherwise, et will stand for i.i.d. noise
independent of regime process. The econometric literature on regime switching
models and their inference is quite large, see, e.g., Granger and Teräsvirta (1993);
Tong (1990). For various regime switching specifications of model (1.3), see Franses
and van Dijk (2000) and the references therein. A widely used regime switching
scheme is the Markov switching model of Hamilton (1989), in which regime
durations have light (exponential) tails. Some recent models involving heavy tailed
switching mechanism, with applications to econometrics, are mentioned in Section 1.

Let us define more precisely a class of regime processes related to a renewal
process. These are processes Rt; taking values in p-dimensional Euclidean space Rp;
which change their value randomly and independently at random times Sj of a given
renewal process and then keep the value constant until the next renewal time. To give
a formal definition, let ðU1; z1Þ; ðU2; z2Þ; . . . be a sequence of independent vectors,
where Uj ¼ 1; 2; . . . is the duration and zj 2 Rp is the value of the jth subsequent
regime. Moreover, we assume that random vectors ðUj ; zjÞ; j ¼ 2; 3; . . . follow a
common distribution ðU ; zÞ with m ¼ EUo1: Let S0 ¼ 0;Sj ¼ U1 þ 	 	 	 þ Uj :

Definition 2.1. We call a renewal regime process a stochastic process Rt; t ¼ 1; 2; . . .
such that Rt ¼ zj for t 2 ðSj�1;Sj�; j ¼ 1; 2; . . . .

According to the above definition, regime switch times Sj constitute an integer-
valued renewal process with interrenewal distribution U and initial distribution U1:
The distribution of U1 is generally different from U; in the case of stationary renewal
process it is given by

P½U1 ¼ u� ¼ m�1P½UXu�; u ¼ 1; 2; . . . .
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The assumption of independence of the sequence ðUj ; zjÞ helps to avoid
mathematical technicalities, although most of the results below are expected to
hold under suitable weak dependence conditions on the sequence ðUj ; zjÞ as well.
On the other hand, our assumptions allow for dependence between components Uj

and zj :
A regime switching process X t; t ¼ 0; 1; . . . corresponding to a renewal regime

process Rt will be called a renewal regime switching process. Let Ft be the history s-
field which contains all information about X s and Rs up to time s ¼ t; and let
Gj�1 ¼ FSj�1

be the history until the last regime change at random time Sj�1 þ 1:
Denote Nn ¼ maxfj : Sjpng the number of renewal points Sj in the interval ½1; n�:
Let Y j be the sum of X t’s in the interval ðSj�1;Sj � as defined in (1.2). All relations
below, involving random variables, conditional probabilities and expectations, are
supposed to hold almost surely (a.s.) and uniformly in jX1:
Assumption A1. The sum Y j in (1.2) can be represented as the product of two
random variables:

Y j ¼ FjZj, (2.1)

where Fj40 is a function of the current regime variables ðUj ; zjÞ and the past history
Gj�1 (in other words, Fj is measurable w.r.t. the s-field sfUj ; zj ;Gj�1g).

The representation (2.1) is crucial for our discussion. As was noted in Section 1,
the intuitive meaning of Zj is ‘aggregate innovation’ (i.e., the ‘innovation’ of the
aggregated process Y j in (1.2)) and Fj as ‘aggregate volatility’, the latter being
completely determined by the current regime (its duration, type) and the previous
history up to time Sj�1: Representation (2.1) is obviously not unique; a natural
choice of Fj ; at least in the case when Y j has finite conditional variance
w.r.t. sfUj ; zj ;Gj�1g; is the conditional standard deviation:

Fj ¼ Var1=2½Y jjUj ; zj ;Gj�1�. (2.2)

If the conditional law ½Y jjUj ; zj ;Gj�1� is centered Gaussian, then Zj ¼ F�1
j Y j�

Nð0; 1Þ; implying that Y j of (2.1) is a conditionally heteroskedastic series with
i.i.d. Gaussian innovations Zj and (heavy-tailed) volatility Fj ; the heavy-tailedness
being a consequence of Assumption A2 below. In some cases, Fj is a simple function
of the current regime variables alone, such as Fj ¼ Uj in the switching mean example
of Section 3, or Fj ¼ zj in the volatility example of Section 4. See also (5.28), (5.31)
for simple expressions of Fj in the case of slope switching between 0 and some
nonrandom AX1:
Assumption A2. There exist (nonrandom) constants 0olo2; c040; C40; a
(nonrandom) function hðvÞ ! 0 ðv ! 0Þ and a r.v. F040 such that

P½F04u��c0u�l ðu ! 1Þ; P½Fj4ujGj�1�pCu�l ð8u40Þ (2.3)
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and such that

E½eivFj jGj�1� � EeivF0
��� ���pjvjlhðvÞ. (2.4)

The first relation of (2.3) implies that the distribution of F0 belongs to the domain
of attraction of a totally skewed to the right l-stable law (i.e., a stable law with
stability parameter l and skewness parameter equal to 1; see Samorodnitsky and
Taqqu (1994, p. 13)). Together with (2.4), it implies a similar tail relation for the
conditional distribution:

P½Fj4ujGj�1��c0u�l ðu ! 1Þ, (2.5)

with the same nonrandom c040 as in (2.3). While condition (2.5) seems close to
(2.3)–(2.4), the latter conditions are technically more convenient for proving limit
theorems.

Assumption A3. There exists a r.v. Z0 such that for any fixed K40

sup
jujpK

E½eiuZj jFj ;Gj�1� � EeiuZ0
��� ���pdK ðFjÞ, (2.6)

where dK ðuÞ is a nonrandom function such that dK ðuÞ ! 0 ðu ! 1Þ:

Assumption A3 is equivalent to weak convergence of the conditional distribution
P½ZjpxjFj ;Gj�1� to the distribution P½Z0px� as Fj ! 1: Typically, Fj ! 1

implies Uj ! 1 and vice versa, so that (2.6) says that the distribution of Zj ¼

F�1
j Y j tends to some distribution Z0 independent of Gj�1 as the interval length Uj

increases. Under conditional Gaussianity of the law½Y jjUj ; zj ;Gj�1� and the choice
(2.2) of Fj ; relation (2.6) is obviously satisfied with Z0�Nð0; 1Þ and dK ðuÞ � 0:
‘Aggregate innovation’ Zj being often a normalized sum of random variables, A3

may also entail some form of central limit theorem as the interval length Uj ! 1; in
which case Z0 again may be a normal or stable r.v. However, A3 also applies to the
situations as in Theorem 5.3 (slope switching above the unit root), where Z0;
differently from above, is given by infinite geometric series of noise variables (see
(5.30) below). Let us finally note that a similar but stronger version of A3 is given by
the uniform bound

sup
x2R

jP½ZjpxjFj ;Gj�1� � P½Z0px�jpdðFjÞ, (2.7)

where dðuÞ is a nonrandom function such that dðuÞ ! 0 as u ! 1:

Assumption A4. There exist r4l and a (nonrandom) constant C0o1 such that

E½jZjj
rjFj ;Gj�1� þ EjZ0jrpC0.

Moreover, if lX1 then E½ZjjFj ;Gj�1� ¼ EZ0 ¼ 0:

Assumption A4 implies that Zj have lighter conditional tails as Fj : The zero
conditional expectation condition is consistent with the ‘aggregate innovation’
interpretation of Zj ; and implies the martingale difference property of Y j (2.1) when
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lX1: In particular, if lX1 and rX2; A3–A4 imply that Zj ; jX1 are uncorrelated,
with zero mean and variance uniformly bounded in j.

Assumption A5.
Pn

t¼1 X t �
PNn

j¼1 Y j ¼ opðn
1=lÞ; as n ! 1:

Assumption A5 is the most intuitive of A1–A5: By the definition of Y j ; the
difference of the two sums in A5 equals

P
SNnotpn X t; where the number of

summands n � SNn
¼ Opð1Þ; see Feller (1971). Therefore this difference is also

bounded in probability under weak additional assumptions on the sequence X t: In
particular, A5 holds if supjX1 EjX jj

do1 for some d40; see the proof of Corollary
3.1 in Appendix B.

Introduce a Lévy process W lðtÞ; tX0 with independent and stationary increments
and the characteristic function

EeiaW lðtÞ ¼ expf�tm�1jajloða=jajÞg; a 2 R,

where oðzÞ ¼ Gð2�lÞ
ljl�1j

ðcþ þ c�Þ cosðpl
2
Þ þ i sgnðzÞ sinðpl

2
Þðcþ � c�Þ

� �
; i ¼

ffiffiffiffiffiffiffi
�1

p
; and

where

cþ ¼ c0EjZ0jlIðZ040Þ; c� ¼ c0EjZ0jlIðZ0o0Þ. (2.8)

Write !fdd for weak convergence of finite dimensional distributions.

Theorem 2.1. Let X t be a renewal regime switching process satisfying Assumptions

A1–A5; 0olo2: Then

n�1=l
X½nt�
s¼1

X s; tX0

( )
!fdd fW lðtÞ; tX0g. (2.9)

As noted in the Introduction, A1–A5 help to reduce the proof of (2.9) to the
convergence

n�1=l
X½nt=m�
j¼1

F0
j Z0

j ; tX0

( )
!fddfW lðtÞ; tX0g, (2.10)

where F0
j ; jX1 and Z0

j ; jX1 are both i.i.d. sequences, also independent of each

other, Z0
j being a copy of Z0; and F0

j a copy of F0: Relation (2.10) follows by the

central limit theorem for i.i.d. summands Y 0
j ¼ F0

j Z0
j ; provided their distribution

belongs to the domain of attraction of l-stable law with characteristic function

e�jajloða=jajÞ: The last fact follows from A2 to A4 and the classical Breiman’s lemma
(Lemma A.1 below) about tail behavior of the product of two independent random
variables. Therefore, Theorem 2.1 can be considered as a generalization of Breiman’s
lemma for dependent random variables.

Remark 2.1. A natural question in the context of Theorem 2.1 concerns functional
convergence in the Skorokhod space D½0; 1�; the limit process W lðtÞ being a.s.
discontinuous on ½0; 1�: It is well-known that the convergence in (2.10) for the
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approximating i.i.d. sequence F0
j Z0

j extends to the convergence in D½0; 1�
(Skorokhod, 1964). As noted by a referee, a stronger approximation assumption, viz.

sup
t2½0;1�

n�1=l
X½nt�
s¼1

X s �
X½nt=m�
j¼1

F0
j Z0

j

�����
����� ¼ opð1Þ, (2.11)

together with A1–A5; imply the functional convergence in Theorem 2.1, too. On the
other hand, assumption (2.11) seems to be quite restrictive and needs further
investigation in concrete cases. It is also known that the functional convergence in
the commonly used Skorokhod J1-topology does not hold for some simple mean
switching models, see Mikosch et al. (2002, p. 33, 40), Pipiras et al. (2004).
3. Renewal regime switching in levels

Consider the simplest stochastic regime switching model

X t ¼ mt þ et, (3.1)

where et is a zero mean stationary process and mt is a randomly switching mean. The
processes mt and et are usually assumed independent. We assume that the mean
process mt is a stationary renewal reward process, i.e.

mt ¼ zj ; Sj�1otpSj, (3.2)

where Sj is a stationary renewal process with interrenewal distribution U, m ¼

EUo1; and zj are i.i.d. random variables, independent of the renewal process Sj :
By the independence of mt and et;

CovðX 0;X tÞ ¼ VarðzÞ pt þ Covðe0; etÞ,

where pt ¼ P½Sjeð0; tÞ 8j� is the probability that the interval ð0; tÞ is void of renewal
points. It is well-known that for a stationary renewal process, this probability is
given by pt ¼ m�1

P1

u¼t P½UXu�: If the tail distribution of U decays as in (3.4) below,
with l41; the probability pt decays as t1�l and hence the autocovariance functions
of mt and X t are nonsummable for 1olo2: More precisely, assuming that the
autocovariance of et decays as oðt1�lÞ; we obtain

CovðX 0;X tÞ�Covðm0;mtÞ�c2t1�l; c2 ¼ c1VarðzÞ=m. (3.3)

This means that both processes mt and X t have covariance long memory. Related
results can be found in Liu (2000), Jensen and Liu (2001), Davidson and Sibbertsen
(2002).

Asymptotic behavior of partial sums in the renewal mean switching model (3.1)
and in some related models was discussed in Taqqu and Levy (1986), Mikosch et al.
(2002), Pipiras et al. (2004), Davidson and Sibbertsen (2002) and other papers. The
main emphasis of these studies is aggregation, or the possibility of obtaining
Gaussian long-memory process as the limit of an aggregated sum of independent
copies of (3.1). According to the popular idea of Granger (1980), this provides a
possible explanation of observed long-memory property in economic time series.
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If the process et is covariance stationary and short memory, in the sense that its
covariance function is absolutely summable, then

Pn
t¼1 et ¼ Opðn

1=2Þ: The behavior
of partial sums of X t in (3.1) in the long-memory case is thus determined by the
behavior of sums of mt; or i.i.d. random variables Y j ¼ Ujzj : The product form of Y j

suggests using Theorem 2.1 with Fj ¼ Uj ;Zj ¼ zj ;F
0 ¼ U ;Z0 ¼ z: A short proof of

the following corollary is given in Appendix B.

Corollary 3.1. Let X t be a renewal mean switching process defined in (3.1), (3.2), with

interrenewal distribution U satisfying

P½U4u��c1u�l ðu ! 1Þ (3.4)

for some c140; 1olo2; and z satisfying Ez ¼ 0; Ejzjro1 for some r4l: Suppose et

is a stationary zero mean process whose autocovariance function is absolutely

summable. Then the convergence (2.9) holds, where constants cþ ¼ c1EjzjlIðz40Þ;
c� ¼ c1EjzjlIðzo0Þ:

A generalization of model (3.1), (3.2) is discussed in Davidson and Sibbertsen
(2002), where ðUj ; zjÞ form a generally dependent stationary sequence. In the case
when this sequence is i.i.d. (with zj not necessarily independent of Uj) and the Uj’s
are heavy tailed, they prove a similar result to our Corollary 3.1.

Intuitively, the fact that the limit process in Corollary 3.1 has jumps, can be
explained as follows. Consider the simplest case of mean switching between two
values �1 with equal probabilities P½zj ¼ �1� ¼ 1=2; and let et ¼ 0: Then, the
integrated process

Pk
t¼1 X t ¼

Pk
t¼1 mt is a ‘broken line’ with slope �1 on intervals

ðSj�1;Sj � where zj ¼ �1: The rescaled partial sums process n�1=lP½nt�
t¼1 X t is a similar

‘broken line’ but with slope �n1�1=l ! �1 on corresponding random intervals
ðSj�1=n;Sj=n�: Because of (3.4), almost all of these intervals have length Oðn�1Þ but a
few ‘long’ intervals have typical length Oðn1=l�1Þ; see Embrechts et al. (1997, Chapter
8.6), which still tends to zero as l41: The increment of the partial sums process on
such ‘long’ interval is proportional to n1�1=ln1=l�1 ¼ 1; in other words, this
increment does not vanish in the limit n ! 1 but instead becomes a jump in the
trajectory of the limiting process W lðtÞ:
4. Renewal regime switching in volatility

Let us discuss regime switching in volatility, or

X t ¼ stet, (4.1)

where et is a stationary process, and st40 (‘volatility’) is a regime process
independent of et: To simplify our discussion, we shall consider the case when et is
i.i.d. noise, with generic distribution e:

Let st be a stationary renewal reward process similar to (3.2):

st ¼ zj ; Sj�1otpSj, (4.2)
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where Sj ; zj satisfy the same conditions as in (3.2), with the only difference that now
zj40 a.s.

The model (4.1) was discussed in Liu (2000) in the finite variance case
Ez2o1;Ee2o1;Ee ¼ 0 and a heavy tailed duration distribution U. Let

P½U4u��c1u�b ðu ! 1Þ (4.3)

for some c140; b41: Exactly as in (3.3), in this case one has Covðs0;stÞ�c2t1�b; so
that for 1obo2 (and Ee2o1;Ez2o1) the stochastic volatility model (4.1) has
covariance long memory. A similar conclusion is given in Liu (2000, Theorem 2.1).
Under the same conditions, Liu (2000, Theorem 2.2) proved that partial sums
process of X t in (4.1) converges to a Brownian motion, under standard
normalization n1=2:

It is interesting to compare this result with our Theorem 2.1. If we put Fj ¼ zj ;
F0 ¼ z; Zj ¼

P
Sj�1otpSj

et; Assumption A3 holds with Z0 ¼
PU

i¼1 ei;EðZ
0Þ

2
¼

EUEe2o1 but A2 cannot hold with lo2; as EF2 ¼ Ez2o1:
The following Corollary 4.1 complements the results in Liu (2000), by considering

the case of infinite variance stochastic volatility (4.2). Let

P½z4z��c2z�l ðz ! 1Þ (4.4)

for some 0olo2; c240: By stationarity of the renewal process, the distribution of st

coincides with z and therefore (4.4) implies Es2
t ¼ 1: In view of (4.1), (4.2), Theorem

2.1 naturally applies with

Fj ¼ zj ; Zj ¼
X

Sj�1otpSj

et. (4.5)

Corollary 4.1. Let X t be the stochastic volatility model of (4.1), where zj satisfy (4.4),
with some 0olo2; and where et are i.i.d., Ejejro1 for some r4l and Ee ¼ 0
whenever lX1: Let U ; z be independent, EUo1: Then the convergence (2.9) holds.

See Appendix B for the proof of the above result. Note that it does not require
heavy-tailedness of U nor any other condition on U except m ¼ EUo1: In this
sense, Corollary 4.1 is not related to long memory in stochastic volatility. Of course,
if we assume long-tailedness of U as in (4.3), the infinite variance volatility model of
Corollary 4.1 will display long memory, in the sense that power series jX tj

d ¼ sdt jetj
d

will have autocorrelations Oðt1�bÞ decaying as in Liu’s model, for any d40 such that
Ez2dEjej2do1: See also Liu (2000, p. 149).

The fact that duration distribution U has no effect (except for the mean EU) on
the limit distribution W lðtÞ is in contrast with the results of Sections 3 and 5. It this
sense, models with regime switching in volatility seem to be different from models
with switching of mean or slope. The same lack of effect of U on the limit
distribution occurs also in the finite variance case studied by Liu (2000). As Liu says
on p.149: ‘... regardless of regime switching and even in a quite peculiar way, we still
have Brownian motion as our limit instead of any jump process...’

Intuitively, the absence of jumps in the limit process of the volatility model with
finite variance can be explained by a similar reasoning as their presence in the
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switching mean model of Section 3. Consider the case of volatility switching between

two values 0os�osþ: The process
Pk

t¼1 X t ¼
Pk

t¼1 stet on each interval k 2

ðSj�1;Sj � is a random walk with zero mean and respective variance s2
�: Therefore

n�1=2
P½nt�

t¼1 X t behaves as random walk normalized by n�1=2 and its increment on

random interval ðSj�1=n;Sj=n� of length Oðn1=b�1Þ is of vanishing magnitude

Oððn1=b�1Þ
1=2

Þ ¼ oð1Þ; for any b41: In other words, even ‘long’ durations Uj ¼

Oðn1=bÞ between consecutive switches of the volatility cannot produce a jump in the
limit n ! 1:

Let us note, finally, that the above reasoning does not apply to the infinite variance
volatility switching model discussed in Corollary 4.1. In that case, jumps in the limit
l-stable process arise from occasional ‘large’ values Oðn1=lÞ of zj’s, similarly as in the
classical central limit theorem for sums of i.i.d. r.v.’s.
5. Renewal regime switching in slope

One of the most interesting cases of stochastic regime switching concerns the slope
coefficient at in AR(1) model (1.1). General properties of AR(1) equation with
random and/or time-dependent coefficient can be found in Vervaat (1979),
Tjøstheim (1986), Brandt (1986), Karlsen (1990), among others. Tong (1990)
discusses various regime switching time series models including (1.1), with a special
emphasis on threshold models. According to the so-called ‘threshold principle’,
regimes are naturally introduced via thresholds, e.g., in the simplest SETAR(1)
model, at � aðstÞ; where st ¼ j whenever X t�1 2 SðjÞ with ðSðjÞÞ constituting some
partition of R: In the Markov switching regime model, st is an outcome of an
(unobserved) finite-state Markov chain independent of et; see, e.g., Hamilton (1994,
Chapter 22).

Long-memory properties and asymptotic behavior of partial sums for renewal
regime switching in slope was recently studied in Leipus and Surgailis (2003a),
Leipus et al. (2004). Below, we extend these results and discuss these questions in the
context of Theorem 2.1, in particular, the verification of Assumptions A1–A5:

Consider the equation

X t ¼ atX t�1 þ et, (5.1)

where et; t 2 Z are i.i.d. innovations, and at; t 2 Z is a strictly stationary ergodic
process, independent of et; t 2 Z: A stationary solution of (5.1) is given by the infinite
series

X t ¼ et þ atet�1 þ atat�1et�2 þ 	 	 	

¼ et þ
X
sot

es

Y
soupt

au. ð5:2Þ

According to Brandt (1986), the series (5.2) converges in probability if conditions

E log ja0jo0; E logþje0jo1, (5.3)
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are satisfied, where logþx ¼ logðx _ 1Þ: Note the first condition of (5.3) is satisfied if
either P½a0 ¼ 0�40; or P½ja0jp1� ¼ 1 and P½ja0jo1�40: The value at ¼ a of the slope
coefficient determines the current regime of the process X t; i.e., in the terminology of
Section 2, at ¼ Rt is the regime process. Correspondingly, one can have three types
of behavior: (1) stationarity, or I(0) regime 0pao1; (2) random walk, or I(1) regime
a ¼ 1; and (3) exponential growth, or I(1) regime a41:

Note that Theorem 2.1 does not directly apply to X t of (5.2), as the conditional

expectation E½YjjFj ;Gj�1� ¼
P

spSj�1
esE

P
Sj�1otpSj

at 	 	 	 asþ1jFj ;Gj�1

h i
a0 in gen-

eral. On the other hand, A1 and A4 imply E½Y jjFj ;Gj�1� ¼ E½F�1
j ZjjFj ;Gj�1� ¼

F�1
j E½ZjjFj ;Gj�1� ¼ 0; for lX1: Therefore X t of (5.2) need to be centered by

corresponding conditional expectations. For Sj�1otpSj ; let X 1
t ¼ E½X tjGj�1;Uj ; zj �;

X 0
t ¼ X t � E½X tjGj�1;Uj ; zj�: Clearly, the convergence (2.9) follows from

n�1=l
X½nt�
t¼1

X 0
t !fddW lðtÞ;

Xn

t¼1

X 1
t ¼ opðn

1=lÞ. (5.4)

Theorem 2.1 can be used to prove the first relation in (5.4) while the second one
needs additional argument. Consider the representation (2.1) of ‘centered aggregates’

Y 0
j ¼

P
Sj�1otpSj

X 0
t : Note

Y 0
j ¼

X
Sj�1ospSj

es

X
sptpSj

zt�s
j (5.5)

is a weighted sum of random number Uj ¼ Sj � Sj�1 of i.i.d. r.v.’s es;Sj�1ospSj

with random weights
P

sptpSj
zt�s

j depending on the current regime at ¼ zj :

According to our definition of renewal regime process, zj ;Uj are independent and

therefore the distribution of Y 0
j is completely determined by generic distributions e; z

and U. The choice of the representation Y 0
j ¼ FjZj depends on tail properties of e: In

the finite variance case s2 ¼ Ee2o1; Ee ¼ 0; let

Fj ¼ Var1=2½Y 0
j jUj ; zj ;Gj�1�; Zj ¼ F�1

j Y 0
j , (5.6)

as in (2.2). Note Y 0
j and Fj are independent of Gj�1 and

F2
j ¼ s2

XUj

s¼1

ð1 þ zj þ 	 	 	 þ zUj�s

j Þ
2

depends on the distributions z and U only. Note that at zj ¼ 1 (the unit root), this

conditional variance grows as U3
j : Indeed, F2

j ¼ s2
PUj

s¼1 ðUj � s þ 1Þ2 ¼ s2ðUjðUj þ

1Þð2Uj þ 1Þ=6Þ�ðs2=3ÞU3
j ; implying P½Fj4u��P½z1 ¼ 1�P½Uj4ð3u=s2Þ

2=3
��c0u�l

with l ¼ 2b=3; in the case of (5.2) switching between I(0) and I(1) regimes and

duration distribution P½Uj4u��c1u�b (see (4.3)). In some other situations and

especially for nonlinear models, determining the tail index l of ‘aggregate volatility’
Fj is not so obvious and may present technical difficulty. Another technical problem
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is the control of centering conditional expectations X 1
t for proving the second

relation in (5.4). Leipus and Surgailis (2003a) show that X 1
t actually have short

memory, in the sense that
P1

t¼0 jEX 1
0X 1

t jo1; and therefore
Pn

t¼1 X 1
t ¼ Opðn

1=2Þ ¼

opðn
1=lÞ as lo2:

The above mentioned technical difficulties do not arise in the simplest situation
when at switches between two values: value a ¼ 0 and some deterministic value
AX1: At the moment when at assumes value 0, the process X t drops into
i.i.d. regime and ‘forgets’ all previous history. We call such switching mechanism
memoryless regime switching. In this case, sums of X t between consecutive moments
of at ¼ 0 are conditionally independent random variables, similarly as Y 0

j in (5.5).
Let us precise what we mean by memoryless regime switching. Let

	 	 	oSj�1oS0
j oSjoS0

jþ1oSjþ1o 	 	 	 (5.7)

be an alternating stationary process of successive switching times of the slope
coefficient:

at ¼
A Sj�1otpS0

j ;

0 S0
j otpSj :

8<
: (5.8)

The corresponding regime durations will be denoted by

U1
j ¼ S0

j � Sj�1; U0
j ¼ Sj � S0

j . (5.9)

Eq. (5.8) implies that X t stays in i.i.d. regime during time interval ½S0
j þ 1;Sj�: Below

we assume that ðU0
j ;U

1
j Þ, j 2 Z is a sequence of i.i.d. random vectors, while the

components U0
j ;U

1
j themselves may be mutually independent or dependent. This

alternating regime process fits into Definition 2.1 by putting Uj ¼ U0
j þ U1

j ; zj ¼ U0
j ;

in which case regime between successive moments Sj is specified by duration U0
j ; and

Uj ¼ Sj � Sj�1 are i.i.d.
In a realistic model, U1

j and U0
j could have different distributions and/or

probability tails, because they correspond to different economic situations: the first
one to a period of high economic activity (‘wild fluctuations in stock market’), and
the second one to a usual ‘stabilization’ period. It is quite common that the lengths of
these periods are correlated between themselves: after a long period of high activity,
one should expect a longer period of stabilization and vice versa. One of the simplest
cases of memoryless regime switching in slope is the Blanchard’s bubbles’ model
mentioned in Section 1. In this model, at are given by

at ¼ Abt, (5.10)

where bt is (i.i.d.) Bernoulli process taking value 1 with probability p and value 0
with probability 1 � p: In such case, generic durations U0 and U1 are mutually
independent and geometrically distributed with parameters p and 1 � p; respectively.
A generalization of (5.10) given by a stationary Markov chain taking two values 0
and A also yields independent and geometrically distributed U0 and U1; see Example
5.1 below.
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In the engineering literature, the model at (5.8) with independent durations U0;U1

and A ¼ 1 is commonly referred to as an on/off process; see Willinger et al. (1997),
Heath et al. (1998) and the references therein. It models the evolution of an idealized
source which produces data at a constant rate in on state and produces no data in off

state. It is argued that both on and off times are well modelled by heavy tailed
distributions. In such case, Heath et al. (1998) obtain the precise long-memory decay
of the covariance function of on/off process, using advanced renewal theory
methods. Similar result is obtained in Jensen and Liu (2001). Our model (5.8)
generalizes on/off process by allowing consecutive on and off durations to be
mutually dependent. Asymptotic decay of the autocovariance of (5.8) is discussed in
Leipus and Surgailis (2003b). It is easy to see that marginal probabilities of
stationary process (5.8) are given by

P½at ¼ A� ¼ m1=m; P½at ¼ 0� ¼ m0=m, (5.11)

where mi ¼ EUi; i ¼ 0; 1 and m ¼ m0 þ m1:
Let us turn to the properties of solution of (5.1) with at defined by (5.8). In such

case, (5.2) becomes

X t ¼
et þ Aet�1 þ 	 	 	 þ At�Sj�1eSj�1

Sj�1otpS0
j ;

et S0
j otpSj :

8<
: (5.12)

Write e 2 DAðaÞ ð0oao2Þ if there exist constants c�e X0; cþe þ c�e 40 such that

P½e4x��cþe x�a ðx ! 1Þ; P½eox��c�e jxj
�a ðx ! �1Þ (5.13)

and, moreover, Ee ¼ 0 whenever a41: We also write e 2 DAð2Þ if Ee2o1; Ee ¼ 0:
Condition e 2 DAðaÞ implies that the distribution e belongs to the domain of normal
attraction of a-stable law (Ibragimov and Linnik, 1971), in other words,

n�1=a
Xn

t¼1

et!dZ0, (5.14)

where Z0 is a-stable r.v. ð0oap2Þ and !d stands for convergence in distribution.
Clearly, if e 2 DAðaÞ (0oap2) then the second condition of (5.3) is satisfied. The

first condition of (5.3) is satisfied as P½a0 ¼ 0�40; see (5.11). As a consequence, (5.12)
is a (unique) strictly stationary solution of (5.1) with at from (5.8) (Brandt, 1986).
However, this solution need not have finite variance. A necessary and sufficient
condition for (5.12) to be covariance stationary is given in the following theorem. Let
Ū

1
be a r.v. taking values v ¼ 1; 2; . . . with probabilities P½Ū

1
¼ v� ¼ m�1

1 P½U1
Xv�:

Theorem 5.1. Let e 2 DAð2Þ: Eq. (5.1) with at from (5.8) admits a covariance

stationary solution X t defined by (5.12) if and only if

X1
v¼1

A2vP½Ū
1
Xv�o1. (5.15)
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In this case,

CovðX 0;X tÞ ¼ ðs2m1=mÞA
�t
X1
v¼t

A2vP½Ū
1
Xv�, (5.16)

where s2 ¼ Ee2:

An immediate consequence of the above theorem is the fact that in the case A41;
the covariance function of the covariance stationary solution X t from (5.12) decays
exponentially as OðA�tÞ: However, in the case A ¼ 1 the solution X t may exhibit
covariance stationary long memory. A similar fact was earlier observed in
Pourahmadi (1988) (see also Leipus and Surgailis, 2003a).

Corollary 5.1. Assume A ¼ 1 and e 2 DAð2Þ: Moreover, assume

P½U14u��c2u�b ðu ! 1Þ, (5.17)

where c240 and b42: Then

CovðX 0;X tÞ�c3t�ðb�2Þ, (5.18)

where c3 ¼ c2s2=ðmðb� 1Þðb� 2ÞÞ:

Indeed, (5.17) implies

P½Ū
1
Xv� ¼ m�1

1

X1
u¼v

P½U1
Xu��ðc2=m1Þ

X1
u¼v

u�b�ðc2=m1ðb� 1ÞÞv1�b.

From this and (5.16), we get

CovðX 0;X tÞ ¼ ðs2m1=mÞ
X1
v¼t

P½Ū
1
Xv��

c2s2

mðb� 1Þ

X1
v¼t

v1�b�c3t2�b,

in accordance with (5.18).
The following theorems give conditions for the convergence to a stable limit of

partial sums of (5.12) in the cases A ¼ 1 and A41; respectively.

Theorem 5.2 (Memoryless regime switching between I(0) and I(1)). Assume A ¼ 1:
Let e 2 DAðaÞ ð0oap2Þ and let condition (5.17) be satisfied, where

1obo1 þ a. (5.19)

Moreover, assume that there exist roa and a constant Co1 such that

E½U0jU1 ¼ n�pCnrð1þaÞ=a; nX1. (5.20)

Then the convergence (2.9) to a l-stable Lévy process holds, with

l ¼
ab

1 þ a
(5.21)

and the constant c0 ¼ c2ð1 þ aÞ�b=ð1þaÞ in (2.8).

On the intuitive level, the above result can be explained as follows. Let Ee2
to1; or

a ¼ 2: Note that the increment of the process
Pk

t¼1 X t on interval ðSj�1;S
0
j � follows
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I(2) (integrated random walk) and its magnitude is proportional to ðS0
j � Sj�1Þ

3=2
¼

ðU1
j Þ

3=2: Therefore increments of n�1=lP½nt�
t¼1 X t on ‘long’ intervals ðSj�1=n;S0

j =n� of

length Oðn1=b�1Þ have magnitude Oðn�1=lðn1=bÞ
3=2

Þ ¼ Oð1Þ (where l ¼ 2b=3; see
(5.21)), which does not vanish as n ! 1: Hence occasional ‘long’ durations of the
unit root regime at ¼ 1 in the model (5.1) give rise to jumps in the limit process
W lðtÞ; similarly as in the switching mean example of Section 3.

Theorem 5.3 (Memoryless regime switching between I(0) and I(1)). Assume A41:
Let e 2 DAðaÞ ð0oap2Þ and let

P½U14u��c4wu ðu ! 1Þ, (5.22)

where c440 and

A�aowo1. (5.23)

Moreover, assume that there exist roa and a constant Co1 such that

E½U0jU1 ¼ n�pCArn; nX1. (5.24)

Then the convergence (2.9) to a l-stable Lévy process holds, with

l ¼ �
log w

log A
(5.25)

and the constant c0 ¼ c4 in (2.8).

The proofs of these theorems are given in Appendix B. Here we give some
comments on the choice of normalization Fj in (2.1). Note that Y j for jX2 can be
split

Y j ¼
X

Sj�1otpS0
j

X t þ
X

S0
j otpSj

X t¼:Y
0
j þ Y 00

j , (5.26)

where the sum Y 0
j ¼

P
Sj�1otpS0

j
ðet þ Aet�1 þ 	 	 	 þ At�Sj�1�1eSj�1þ1Þ for fixed U1

j ¼ n

has the same distribution as (we remind that S0 ¼ 0)

TðA; nÞ ¼
Xn

t¼1

ðet þ Aet�1 þ 	 	 	 þ At�1e1Þ

¼ en þ ð1 þ AÞen�1 þ 	 	 	 þ ð1 þ A þ 	 	 	 þ An�1Þe1. ð5:27Þ

From e 2 DAðaÞ and the classical central limit theorem it easily follows that in the
case 0pAp1 the sum (5.27), normalized by ð1a þ ð1 þ AÞ

a
þ 	 	 	 þ ð1 þ A þ 	 	 	 þ

An�1Þ
a
Þ
1=a; has a limit a-stable distribution. This explains the choice of a-stable Z0

and

Fj ¼ FðU1
j Þ; F0 ¼ FðU1Þ, (5.28)

in the proof of Theorem 5.2, where

FðnÞ ¼ ð1a þ 2a þ 	 	 	 þ naÞ
1=a. (5.29)
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In the case of Theorem 5.3, i.e. if A41; it follows from definition (5.27) that
A�nTðA; nÞ tends in distribution to a r.v. Z0 given by the convergent series

Z0 ¼ ðA � 1Þ�1
X1
j¼0

A�jej, (5.30)

leading to the choice

Fj ¼ AU1
j ; F0 ¼ AU1

. (5.31)

Clearly, (5.30) need not have stable distribution or even probability density. It is
interesting to note that Z0¼d � AðA � 1Þ�1 ~X t; where ~X t ¼ �

P1

j¼0 A�j�1etþj is a
noncausal stationary solution of ~X t ¼ A ~X t�1 þ et; A41; and ¼d stands for equality
of distributions.

Conditions (5.20) and (5.24) are rather weak. They are needed to verify
Assumption A3 (see Appendix B). In the case when U1 and U0 are independent,
they are automatically satisfied as we assume m0 ¼ EU0o1: More generally, if U1

and U0 are dependent, these conditions roughly say that U0 cannot grow very fast as
U1 ¼ n ! 1:

Conditions (5.19) and (5.23) (more precisely, the upper bound in (5.19) and the
lower bound in (5.23)), combined with the corresponding tail conditions (5.17),
(5.22) on the distribution of on interval U1; seem crucial for l-stable limit behavior of
partial sums of X t (loa). Examples 5.1 and 5.2 below show that these bounds are
quite sharp. One may expect that if (5.19), (5.23) are violated, partial sums process in
Theorems 5.2 and 5.3 will converge to a a-stable Lévy process (Brownian motion if
a ¼ 2), under usual normalization n1=a:

Example 5.1. Let A41; e 2 DAð2Þ and let at be a stationary Markov chain with two
states 0 and A and transition probabilities p0 and pA of staying in the same state,
0pp0; pAo1: Then at can be represented as (5.8), where durations U0

j and U1
j are

independent and geometrically distributed:

P½U1 ¼ k� ¼ ð1 � pAÞp
k�1
A ; P½U0 ¼ k� ¼ ð1 � p0Þp

k�1
0 .

Then, if pAoA�2; the corresponding Markov regime switching process X t has finite
variance and exponentially decaying autocovariance, see Theorem 5.1, implyingPn

t¼1 X t ¼ Opðn
1=2Þ: On the other hand, if pA4A�2; the process X t satisfies

conditions of Theorem 5.3 and
Pn

t¼1 X t ¼ Opðn
1=lÞ with l ¼ � log pA= log Ao2: It is

interesting to note that for the Blanchard’s model with at as in (5.10), Lux and
Sornette (2002) obtained the same tail index l for the stationary solution X t itself, in
the case 0olo1 when this solution has infinite expectation EjX tj ¼ 1:

Example 5.2. Let A ¼ 1; e 2 DAð2Þ and let at be a stationary on/off process with
independent on and off durations U1 and U0; where EU0o1 and U1 has a discrete
Pareto distribution P½U1 ¼ k� ¼ c0k�b�1 with parameter b41: Then, if b43; from
Corollary 5.1 we have CovðX 0;X tÞ ¼ Oðt�ðb�2ÞÞ implying

Pn
t¼1 X t ¼ Opðn

1=2Þ: On
the other hand, if 1obo3; Theorem 5.2 implies

Pn
t¼1 X t ¼ Opðn

1=lÞ with l ¼
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2b=3o2: Note that in this case Corollary 5.1 yields Var
Pn

t¼1 X t

� �
¼ Oðn4�bÞ

growing faster than Oðn2=lÞ:
6. Conclusion

It is well-known that covariance long memory similar to that in I(d) models can
arise from structural, or regime changes with a heavy tailed duration distribution.
Typical examples of models with long memory caused by regime switches is I(0)
series with heavy tailed switching of mean and AR(1) process switching between i.i.d.
regime and the unit root. However, unlike their second order properties,
distributional properties of regime switching models with long memory seem to be
very different from I(d) models: the latter models generally lead to a Gaussian but
strongly persistent asymptotic process (fractional Brownian motion), and the former
models to a heavy tailed stable process with independent increments.

We introduce a class of general regime switching models whose natural temporal
aggregates between regime switching times have a characteristic stochastic volatility
representation, with ‘aggregate volatilities’ largely determined by current regime
variables (duration and type) and following a heavy tailed distribution, while
‘aggregate innovations’ are essentially independent of regime variables and have
relatively light distribution tails. It is shown in the paper that the partial sums
process of such stationary regime switching models converges to a stable Lévy
process with independent increments. The intuitive meaning of the last result is that
the covariance long memory of regime switching model does not persist in the
distributional limit but instead ‘transforms into excess variability’. Our results also
apply to regime switching models with infinite variance.
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Appendix A. Proof of Theorem 2.1

The following lemma is commonly attributed to Breiman (1965); see e.g. Pipiras
et al. (2004, Lemma 1.1).

Lemma A.1. Let F0
X0 and Z0 be independent random variables such that P½F04u��

c0u�l; ðu ! 1Þ for some c0; l40; and EjZ0jro1 for some r4l: Let Y 0 ¼ F0Z0:
Then

P½Y 04x��cþx�l ðx ! 1Þ; P½Y 0px��c�jxj
�l ðx ! �1Þ,

where cþ; c� are given by (2.8).
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Proof of Theorem 2.1. We shall prove the convergence of one-dimensional
distributions at t ¼ 1 only. For simplicity of notation, put m ¼ EU ¼ 1: With
Assumption A5 in mind, it suffices to show

n�1=l
XNn

i¼1

Y i!d W lð1Þ. (A.1)

We split the proof of (A.1) into three following steps.
Step 1: Approximation of the sum

PNn

i¼1 Y i of random number Nn of summands
by the sum

Pn
i¼1 Y i; in the sense that

Qn:¼
XNn

i¼1

Y i �
Xn

i¼1

Y i ¼ opðn
1=lÞ. (A.2)

Step 2: Approximation of
Pn

j¼1 Y j by
Pn

j¼1 Y 0
j ; where the Y 0

j ¼ F0
j Z0

j ; jX1 are
i.i.d. as in (2.10), in the sense that for each v 2 R

Ee
ivn�1=l

Pn

j¼1
Y j

� Ee
ivn�1=l

Pn

j¼1
Y 0

j

��� ��� ¼ oð1Þ. (A.3)

Step 3: Application of Lemma A.1 (proof of (2.10)).
We start with (the most difficult) Step 2, or the approximation of a sum of

dependent r.v.’s Y j by a corresponding sum of independent r.v.’s Y 0
j ; in distribution.

To that end, we need (i) to approximate the conditional distribution of each
summand Y j by (unconditional) distribution of Y 0

j ; in the sense which is explained
below, and (ii) to extend the approximation from summands to sums. For (i), we use
the telescoping argument popular in the probability theory. We recall that the idea of
telescoping is to replace summands consecutively one by one, so that each time we
need to compare two sums which differ by only one summand. For (ii), Assumptions
A2–A4 are used to show that the conditional distribution tails of Y j and Y 0

j ¼ F0
j Z0

j

coincide, more precisely, that

DðvÞ:¼ E½eivY j � eivY 0
j jGj�1�

��� ���pjvjl ~dðvÞ ¼ oðjvjlÞ (A.4)

with a (nonrandom) ~dðvÞ ! 0 as v ! 0:
To prove (A.4), write DðvÞpD1ðvÞ þ D2ðvÞ; where

D1ðvÞ:¼ E E½eivFjZj � eivFjZ
0
j jFj ;Gj�1�jGj�1

h i��� ���; D2ðvÞ:¼ E eivFjZ
0
j � eivF0

j Z0
j jGj�1

h i��� ���.
Choose a large K40; then D1ðvÞp

P3
i¼1 D1iðv;KÞ; where

D11ðv;KÞ ¼ E E½eivFjZj � eivFjZ
0
j jFj ;Gj�1�IðK

�1ojvjFjpKÞjGj�1

h i��� ���,
D12ðv;KÞ ¼ E E½eivFjZj � eivFjZ

0
j jFj ;Gj�1�IðjvjFjpK�1ÞjGj�1

h i��� ���,
D13ðv;KÞ ¼ E E½eivFjZj � eivFjZ

0
j jFj ;Gj�1�IðjvjFj4KÞjGj�1

h i��� ���.
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Since jE½eivFjZj � eivFjZ
0
j jFj ;Gj�1�jp2; using (2.3) we obtain

D13ðv;KÞp2P½Fj4jvj�1K jGj�1�pCjvjl=Kl, (A.5)

where Co1 is a nonrandom constant.
Next, consider D12ðv;KÞ: We shall use the following well-known fact: for any

0orp2 and any r.v. x (for 1orp2; assume Ex ¼ 0 in addition), the following
inequality holds: for any real number u

jEeiux � 1jp3 minð1; jujrEjxjrÞ. (A.6)

Using (A.6), Assumptions A2; A4 and integration by parts, we obtain

D12ðv;KÞpCjvjrE Fr
j E½jZjj

rjFj ;Gj�1� þ EjZ0
j j

r
� �

IðjvjFjpK�1Þ Gj�1

��h i
pCjvjrE Fr

j IðjvjFjpK�1Þ Gj�1

��h i

¼ � Cjvjr
Z jvj�1K�1

0

ur dP½Fj4ujGj�1�

¼ Cjvjr � jvj�rK�rP½Fj4v�1K�1jGj�1�

 

þ r

Z jvj�1K�1

0

P½Fj4ujGj�1�u
r�1 du

!

pCjvjr
Z jvj�1K�1

0

ur�1�l du

pCjvjl=Kr�l. ðA:7Þ

By (A.5), (A.7), supjvjo1 jvj
�lðD12ðv;KÞ þ D13ðv;KÞÞ can be made arbitrarily small by

choosing K large enough. Then (A.4) follows for D1ðvÞ if we show for any Ko1

lim
v!0

jvj�lD11ðv;KÞ ¼ 0. (A.8)

Let d140 be an arbitrary small number and let d ¼ d1K�l: Given d and K, by
Assumption A3 one can find L ¼ LðK ; dÞ40 such that

sup
jujpK

E½eiuZj
�� Fj ;Gj�1� � EeiuZ0

j

��� ��� ¼ sup
jujpK

E½eiuZj � eiuZ0
j jFj ;Gj�1�

��� ���pd

holds on fFj4Lg: Clearly, on the set fK�1ojvjFjpKg we have

E½eivFjZj � eivFjZ
0
j jFj ;Gj�1�

��� ���p sup
jujpK

E½eiuZj � eiuZ0
j jFj ;Gj�1�

��� ���pd (A.9)

provided jvjo1=ðKLÞ: Consequently, if jvjo1=ðKLÞ; where L ¼ LðK ; dÞ is defined
above, by (A.9) and Assumption A2 it follows that

D11ðv;KÞpdP½K�1ojvjFjjGj�1�

¼ dP½Fj4K�1jvj�1jGj�1�pCdKljvjl ¼ Cd1jvj
l,
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implying lim supv!0 jvj
�lD11ðv;KÞpCd1: By arbitrariness of d140; this proves (A.8)

and hence (A.4) for D1ðvÞ:
Let us prove (A.4) for D2ðvÞ: By A2;

D2ðvÞ ¼

Z
EðeivzFj � eivzF0

j jFSj�1
ÞP½Z0 2 dz�

����
����

p
Z

jvzjlhðvzÞP½Z0 2 dz�

¼ jvjlEjZ0jlhðvZ0Þ ¼ jvjlh0
ðvÞ,

where h0
ðvÞ:¼EjZ0jlhðvZ0Þ ! 0 as v ! 0 by the dominated convergence theorem.

This completes the proof of (A.4).
Let us prove (A.3). Denote W n:¼n�1=lPn

j¼1 Y j ; W 0
n:¼n�1=lPn

j¼1 Y 0
j ;

W n;k:¼n�1=l
Xk

j¼1

Y j þ
Xn

j¼kþ1

Y 0
j

 !
,

so that W n ¼ W n;n and W 0
n ¼ W n;0: Then by telescoping identity,

EeiuW n � EeiuW 0
n ¼ EeiuW n;n � EeiuW n;n�1

� �
þ 	 	 	 þ EeiuW n;1 � EeiuW n;0

� �
.

Using the fact that Y j ; jpk � 1 are Gk�1 measurable while Y 0
j ; jpn are

independent of Gn; one can write

EeiuW n;k � EeiuW n;k�1

¼ Ee
iun�1=l

Pk

j¼1
Y jþ
Pn

j¼kþ1
Y 0

j

� �
� Ee

iun�1=l
Pk�1

j¼1
Y jþ
Pn

j¼k
Y 0

j

� �

¼ E e
iun�1=l

Pk�1

j¼1
Y j E½eiun�1=lY k � eiun�1=lY 0

k jGk�1�

� �
Ee

iun�1=l
Pn

j¼kþ1
F0

j Z0
j .

By (A.4), uniformly in k, for any fixed u

jEeiuW n;k � EeiuW n;k�1 jpE E½eiun�1=lY k � eiun�1=lY 0
k jGk�1�

��� ���
¼ oððn�1=lÞ

l
Þ ¼ oðn�1Þ.

Consequently, for any u, we obtain jEeiuW n � EeiuW 0
n j ¼ noðn�1Þ ¼ oð1Þ; or (A.3).

To complete the proof of Theorem 2.1, it suffices to show (A.2), or Step 1, as Step
3 follows by Lemma A.1. For any d1; d240 one has

P½jQnj4d1n1=l�pP½jQnj4d1n1=l; ð1 � d2ÞnpNnpð1 þ d2Þn�

þ P½jNn � nj4d2n� ¼: r1ðnÞ þ r2ðnÞ.

By the law of large numbers, for any d40; d240 one can find n0 such that r2ðnÞpd;
8n4n0: It suffices to show that for any given d; d140 one can find d2 ¼ d2ðd; d1Þ40
small enough so that for all n

r1ðnÞpd. (A.10)
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Due to the fact that A1–A4 hold uniformly in j, this follows from

kðn; d2Þ:¼P sup
1pkpd2n

Xk

j¼1

Y j

�����
�����4d1n1=l

" #
pd. (A.11)

Consider first the case 1plo2: Note ðY j ;GjÞj41 is a martingale difference by
Assumption A4: Let Ȳ j:¼F̄jZj ; where

F̄j :¼
Fj if Fjpn1=l;

0 otherwise:

(

Then ðȲ j ;GjÞj41 is again a martingale difference sequence. Then

kðn; d2Þ ¼ P sup
1pkpd2n

Xk

j¼1

Y j

�����
�����4d1n1=l;Fj ¼ F̄j for all 1pjpd2n

" #

þ P sup
1pkpd2n

Xk

j¼1

Y j

�����
�����4d1n1=l;FjaF̄j for some 1pjpd2n

" #

pP sup
1pkpd2n

Xk

j¼1

Ȳ j

�����
�����4d1n1=l

" #
þ P FjaF̄j for some 1pjpd2n

� �
¼:k1ðn; d2Þ þ k2ðn; d2Þ.

By Doob’s inequality for martingales, for any lorp2;

k1ðn; d2ÞpCd�r
1 n�r=lE

X½d2n�

j¼1

Ȳ j

�����
�����
r

pCd�r
1 n�r=l

X½d2n�

j¼1

E Ȳ j

�� ��r,
where, using A2 and A4; similarly as in (A.7),

EjȲ jj
r ¼ E Fr

j E½jZjj
rjGj�1;Fj �;Fjpn1=l

h i
pCE½Fr

j ;Fjpn1=l�pCnðr=lÞ�1.

We thus obtain k1ðn; d2ÞpCd2d
�r
1 : Similarly, by A2; k2ðn; d2Þp

P½d2n�
j¼1

P½Fj4n1=l�pCd2: Therefore kiðn; d2Þ; i ¼ 1; 2 can be made arbitrarily small by an
appropriate choice of d2; uniformly in n. This proves (A.11) and (A.10) for lX1:
Case 0olo1 follows by a similar argument and using the simple triangle inequality
in Lr ðro1Þ instead of Doob’s inequality. &
Appendix B. Other proofs
Proof of Corollary 3.1. We apply Theorem 2.1 with Y j ¼ Ujzj ; Fj ¼ Uj ; Zj ¼ zj ;
F0 ¼ U ; Z0 ¼ z: By independence of Uj ; zj and relation (3.4), A1–A3 are trivially
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satisfied, with hðuÞ ¼ dðuÞ � 0: Assumption A4 follows from Ejzjro1; Ez ¼ 0: It
remains to verify A5: More generally, assume suptX1EjX tj

do1 for some 0odp1
(for X t in (3.1), this assumption is clearly satisfied with d ¼ 1; as
EjX tjpEjzj þ Ejejo1). Let Vn denote the difference of the two sums in A5;
i.e. Vn ¼

P
SNnotpnX t: For any K ;L40 one can write

P½jV nj4K �pP½n � Nn4L� þ P
X

n�Lotpn

jX tj4K

" #
.

As n � SNn
¼ Opð1Þ; see Feller (1971, Chapter 11, Example 10), the first probability

on the r.h.s. can be made arbitrary small by taking L large enough. The second
probability on the r.h.s. does not exceed K�dEð

P
n�Lotpn jX tjÞ

dp
K�dP

n�Lotpn EjX tj
d; for arbitrary 0odp1: Therefore this probability is less than

CLK�dpL�1; for some constant C independent of n and K ¼ ðCL2Þ
1=d: Hence V n ¼

Opð1Þ; thereby proving A5: &

Proof of Corollary 4.1. For Fj ;Zj defined in (4.5), A1 follows by definition, A2

follows by tail condition (4.4), A3 is immediate with Z0 ¼
PU

i¼1ei; and A5 can be

proved as in the proof of Corollary 3.1 above, as EjX tj
d ¼ EzdEjejdo1 for d40

small enough. Finally, A4 follows easily by the independence of U and et:

EjZjj
r ¼ EjZ0jr ¼ EE

XU

i¼1

ei

�����
�����
r�����U

" #
p2E

XU

i¼1

Ejeij
r

" #
¼ 2EUEjejro1: &

Proof of Theorem 5.1. Let us first give a rigorous construction of a stationary
process (5.7) with a given joint distribution ðU0;U1Þ (for mutually independent U0

and U1; this construction is given in Heath et al. (1998)). Let U :¼U0 þ U1; EU ¼

: m ¼ m0 þ m1; and let

	 	 	oS�1o0pS0oS1o 	 	 	 (B.1)

be a (double-sided) stationary renewal process with interarrival distribution U. The
well-known construction of (B.1) starts with a joint distribution of the pair ðS�1;S0Þ:

P½S0 ¼ u;S�1 ¼ �v�:¼m�1P½U ¼ u þ v�; u ¼ 0; 1; . . . ; v ¼ 1; 2; . . . (B.2)

and an i.i.d. sequence Uj ; ja0; independent of ðS�1;S0Þ and distributed according
to U. The moments Sj ; ja0;�1 are then defined by

Sj :¼
S0 þ

Pj
k¼1Uj j ¼ 1; 2; . . . ;

S�1 �
Pjþ1

k¼�1 Uj j ¼ �2;�3; . . . :

(
(B.3)



ARTICLE IN PRESS

R. Leipus et al. / Journal of Econometrics 129 (2005) 299–327322
Let U1
j ; j 2 Z be conditionally independent given Si; i 2 Z defined as above, and

distributed according to the same (conditional) probability

P½U1
j ¼ kjSi ¼ si; i 2 Z�:¼P½U1 ¼ kjU ¼ sj � sj�1�

¼ P½U1 ¼ kjU0 þ U1 ¼ sj � sj�1�, ðB:4Þ

k ¼ 1; 2; . . . ; sj � sj�1 � 1; j 2 Z: Put S0
j :¼Sj þ U1

j ; j 2 Z: From stationarity of (B.3)
and (B.4) it easily follows stationarity of (5.7) and (5.8).

To prove the theorem, let s ¼ 1; for simplicity. Consider the stationary solution
X t as given by (5.2). This solution has finite variance if and only if (see Pourahmadi,
1988)

P1

u¼0 E½a2
0 . . . a2

�u�o1: Clearly,

E½a2
0 . . . a2

�u� ¼ A2uþ2P½a0 ¼ 	 	 	 ¼ a�u ¼ A�

¼ A2uþ2P½S�1o� u;S0
0X0�

¼ A2uþ2
X

s�1o�u;s040

P½S�1 ¼ s�1;S0 ¼ s0;S
0
0X0�.

According to (B.2)–(B.4),

P½S�1 ¼ s�1;S0 ¼ s0;S
0
0X0�

¼ P½S�1 ¼ s�1;S0 ¼ s0�P½S
0
0X0jS�1 ¼ s�1;S0 ¼ s0�

¼ m�1P½U ¼ s0 � s�1�P½U
1
X� s�1jU ¼ s0 � s�1�

¼ m�1P½U ¼ s0 � s�1;U
1
X� s�1�.

Therefore,X
s�1o�u;s040

P½S�1 ¼ s�1;S0 ¼ s0;S
0
0X0�

¼ m�1
X

s�1o�u;s040

P½U ¼ s0 � s�1;U
1
X� s�1�

¼ m�1
X

s�1o�u

P½U1
X� s�1�

¼ ðm1=mÞP½Ū
14u�

and we obtain
P1

u¼0 E½a2
0 . . . a2

�u� ¼ ðm1=mÞ
P1

v¼1 A2vP½Ū
1
Xv�; thereby proving the

first part of the theorem.
In a similar way,

EX 0X t ¼ E½at:::a1� þ
X1
u¼0

E½at . . . a1a2
0 . . . a2

�u�

¼ AtP½at ¼ 	 	 	 ¼ a1 ¼ A�

þ
X1
u¼0

Atþ2uþ2P½at ¼ 	 	 	 ¼ a1 ¼ a0 ¼ 	 	 	 ¼ a�u ¼ A�
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¼ ðm1=mÞA
t P½Ū

1
Xt� þ

X1
v¼1

A2vP½Ū
1
Xt þ v�

 !

¼ ðm1=mÞA
�t
X1
u¼t

A2uP½Ū
1
Xu�.

Theorem 5.1 is proved. &

Proof of Theorem 5.2. Let Fj ;F0 be defined as in (5.28), (5.29). Note
FðnÞ�nð1þaÞ=að1 þ aÞ�1=a; therefore from (5.17)

P½F04x��P½U14ð1 þ aÞ1=ð1þaÞxa=ð1þaÞ��c0x�l ðx ! 1Þ,

where c0 ¼ c2ð1 þ aÞ�b=ð1þaÞ: Whence, Assumption A2 follows, with hðuÞ � 0:
Let us verify A3: To that end, split Y j ¼ Y 0

j þ Y 00
j as in (5.26). Clearly,

distributions of Y 0
j ;Y

00
j depend on U1

j ;U
0
j and do not depend on Gj�1; moreover,

Y 0
j ¼

P
Sj�1otpS0

j
ðt � Sj�1Þet and Y 00

j ¼
P

S0
j otpSj

et are conditionally independent

given Fj : Using stationarity of the renewal process and the fact that Fj ! 1 is

equivalent to U1
j ! 1; A3 follows from

E½expfiuFðnÞ�1Y 00ðU0ÞgjU1 ¼ n� ! 1, ðB:5Þ

E½expfiuFðnÞ�1Y 0ðU1ÞgjU1 ¼ n� ! EeiuZ0

, ðB:6Þ

where

Y 0ðnÞ ¼
Xn

k¼1

kek; Y 00ðnÞ ¼
Xn

k¼1

ek.

Relation (B.6) is equivalent to the convergence
Pn

k¼1 bnkek!dZ0 of weighted sum of
i.i.d. r.v.’s ek; with weights bnk:¼FðnÞ�1k satisfying

Pn
k¼1 ba

nk ¼ 1 (see the definition
(5.29) of FðnÞÞ: Then (B.6) follows from assumption e 2 DAðaÞ and standard
probabilistic argument (Araujo and Giné, 1980, Theorem 2.3.5).

If U0 and U1 are independent, (B.5) is obvious by Y 00ðU0Þ ¼ Opð1Þ and FðnÞ�1
!

0: On the other hand, if U0 ¼ GðU1Þ is some function of U1; then (5.20) implies
GðnÞ ¼ Oðnrð1þaÞ=aÞ and Y 00ðU0Þ ¼ OpððU

0Þ
1=a

Þ ¼ Opðn
rð1þaÞ=a2

Þ ¼ opðFðnÞÞ on the set
fU1 ¼ ng; due to FðnÞ ¼ Oðnð1þaÞ=aÞ and roa: In the general case, in order to prove
(B.5) we need to show that for any 2 40

Iðn;2Þ:¼P½jFðnÞ�1Y 00ðU0Þj4 2 jU1 ¼ n� ! 0

as n ! 1: For any kX1 (which will be chosen later), we can write

Iðn;2Þp
Xk

j¼1

P FðnÞ�1
Xj

s¼1

es

�����
�����4 2;U0 ¼ j

�����U1 ¼ n

" #

þ P½U04kjU1 ¼ n�¼:I1 þ I2.
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Using the independence of ðU0;U1Þ and et; 1ptpn;

I1 ¼
Xk

j¼1

P FðnÞ�1j1=a j�1=a
Xj

s¼1

es

�����
�����4 2

�����U0 ¼ j;U1 ¼ n

" #
P½U0 ¼ jjU1 ¼ n�

p max
1pjpk

P FðnÞ�1k1=a j�1=a
Xj

s¼1

ej

�����
�����4 2

" #
.

Now, since FðnÞ�nð1þaÞ=a and j�1=aPj
s¼1 es ¼ Opð1Þ; see (5.14), therefore I1 ! 0 if k

is chosen so that FðnÞ�1k1=a
! 0: In particular, one can choose k ¼ n1þa�g with some

g40: With this k and using (5.20), we obtain

I2 ¼ P½U04kjU1 ¼ n�pn�1�aþgE½U0jU1 ¼ n�pCn�1�aþgþrð1þaÞ=a ! 0

provided g40 was taken small enough (goð1 þ aÞð1 � ðr=aÞÞ ). This proves (B.5)
and A3:

Let us verify A4: Similarly as in (B.5), (B.6), it suffices to show J 0pC; J 00pC; for

J 0:¼FðnÞ�rE½jY 0ðU1ÞjrjU1 ¼ n�; J 00:¼FðnÞ�rE½jY 00ðU0ÞjrjU1 ¼ n� (B.7)

and some loroa: For J 00; by applying Marcinkiewicz–Zygmund moment inequality
and (5.20), we get

J 00pFðnÞ�rEje1j
rE½U0jU1 ¼ n�pCn�rð1þaÞ=aþrð1þaÞ=a ¼ C.

The estimate J 0pC follows from the bound P½FðnÞ�1
jY 0ðnÞj4x�pCx�a of the tail

distribution function of weighted sum FðnÞ�1Y 0ðnÞ ¼
Pn

k¼1 bnkek of i.i.d. r.v.’s ek; see
Mikosch and Samorodnitsky (2000, Lemma A.4). This proves Assumption A4 and
Theorem 5.2. &

Proof of Theorem 5.3. As in (5.31), let Fj ¼ AU1
j ; F0 ¼ AU1

: Clearly, Fj is
independent of the past history Gj�1 and has the same distribution as F0: Condition
(5.22) easily implies

P½F04x� ¼ P½U14 log x= log A��c3wlog x= log A ¼ c0x�l

as x ! 1; where l is defined in (5.25). Whence A2 follows, with hðuÞ � 0:
To verify A3; it suffices to show that for each u 2 R

E½eiuZj jU1
j ¼ n� ! EeiuZ0

as n ! 1, (B.8)

where r.v. Z0 is defined in (5.30). Similarly as in the proof of Theorem 5.2, this
follows from

E½expfiuA�U1

Y 00ðU0ÞgjU1 ¼ n� ! 1, ðB:9Þ

E½expfiuA�U1

Y 0ðU1ÞgjU1 ¼ n� ! EeiuZ0

, ðB:10Þ

as n ! 1; where Y 0ðnÞ:¼en þ ð1 þ AÞen�1 þ 	 	 	 þ ð1 þ A þ 	 	 	 þ An�1Þe1; Y 00ðnÞ:¼
e1 þ 	 	 	 þ en:
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To show (B.9), as in proof of Theorem 5.2 we write Iðn;2Þ:¼P½A�njY 00ðU0Þj4 2

jU1 ¼ n� pI1 þ I2; where

I1:¼
Xk

j¼1

P A�n
Xj

s¼1

es

�����
�����4 2;U0 ¼ j

�����U1 ¼ n

" #
; I2:¼P½U04kjU1 ¼ n�.

Similarly as in the proof of Theorem 5.2, it follows easily that I1 ! 0 provided
A�nk1=a

! 0; and we can choose k ¼ Anan�1: Then, using condition (5.24),
I2pk�1E½U0jU1 ¼ n�pCA�nanAnr ¼ CnA�nða�rÞ ! 0; thus proving (B.9).

To prove (B.10), write

A�nY 0ðnÞ ¼ A�nðA � 1Þ�1
Xn

i¼1

ðAn�iþ1 � 1Þei

¼dðA � 1Þ�1
Xn�1

i¼0

A�iei � ðA � 1Þ�1A�n
Xn�1

i¼0

ei ¼ Z0 � Rn,

where Rn:¼ðA � 1Þ�1P1

i¼n A�iei þ ðA � 1Þ�1A�nPn�1
i¼0 ei: Using A41 and e 2 DAðaÞ;

Rn ¼ opð1Þ easily follows, thereby implying (B.10).
It remains to verify Assumption A4; or J 0pC; J 00pC; where

J 0:¼A�nrE½jY 0ðnÞjr�; J 00:¼A�nrE½jY 00ðU0ÞjrjU1 ¼ n�

for some loroa; cf. (B.7). Using the fact that e 2 DAðaÞ implies Ejejro1 for any
0oroap2 as well as the inequality Ej

Pn
i¼1 aieij

rp2
Pn

i¼1 jaij
rEjeij

r which is valid for
any 0orp2; we obtain

J 0pC
Xn

i¼1

A�riEjeij
r þ A�rn

Xn

i¼1

Ejeij
r

 !
pC

Xn

i¼1

A�ri þ A�rnn

 !
pC.

Finally, using (5.24)

J 00pCA�nrE
XU0

i¼1

Ejeij
r

�����U1 ¼ n

" #
pCA�nrE½U0jU1 ¼ n�pC.

This completes the proof of Theorem 5.3. &
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Granger, C.W.J., Teräsvirta, T., 1993. Modelling Nonlinear Economic Relationships. Oxford University

Press, Oxford.

Hamilton, J.D., 1989. A new approach to the economic analysis of nonstationary time series and the

business cycle. Econometrica 57, 357–384.

Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press, Princeton.

Heath, D., Resnick, S., Samorodnitsky, G., 1998. Heavy tails and long range dependence in on/off

processes and associated fluid models. Mathematics of Operations Research 23, 145–165.

Hsieh, M., Hurvich, C.M., Soulier, Ph., 2003. Asymptotics for duration-driven long range dependent

processes. Preprint.

Ibragimov, I.A., Linnik, Yu.V., 1971. Independent and Stationary Sequences of Random Variables.

Wolters-Noordhoff, Groningen.

Jensen, M.J., Liu, M., 2001. Do long swings in the business cycle lead to strong persistence in output?

Preprint.

Karlsen, H.A., 1990. Existence of moments in a stationary stochastic difference equation. Advances in

Applied Probability 22, 129–146.

Leipus, R., Surgailis, D., 2003a. Random coefficient autoregression, regime switching and long memory.

Advances in Applied Probability 35, 737–754.

Leipus, R., Surgailis, D., 2003b. Long range dependence in on/off process with dependent on and off

intervals. Preprint.

Leipus, R., Viano, M.-C., 2003. Long memory and stochastic trend. Statistics and Probability Letters 61,

177–190.

Leipus, R., Paulauskas, V., Surgailis, D., 2004. Random coefficient AR(1) process with heavy-tailed

renewal switching coefficient and heavy tailed noise. Preprint.

Liu, M., 2000. Modeling long memory in stock market volatility. Journal of Econometrics 99, 139–171.

Lobato, I.N., Savin, N.E., 1998. Real and spurious long-memory properties of stock-market data (with

comments). Journal of Business and Economic Statistics 16, 261–283.



ARTICLE IN PRESS

R. Leipus et al. / Journal of Econometrics 129 (2005) 299–327 327
Lux, T., Sornette, D., 2002. On rational bubbles and fat tails. Journal of Money, Credit, and Banking 34,

589–610.

Mikosch, T., Samorodnitsky, G., 2000. The supremum of a negative drift random walk with dependent

heavy-tailed steps. Annals of Applied Probability 10, 1025–1064.

Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A., 2002. Is network traffic approximated by stable
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