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Abstract

In the paper we investigate application of a new estimator for tail in-
dex, proposed in [5] and [18]. Testing hypothesis of change at unknown
place and detecting change in mean allow us to provide theoretical results
on the estimation of a changepoint in a tail index. We demonstrate the
applicability of these results in practice.
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1 INTRODUCTION AND FORMULATION OF RESULTS

During last decades many papers, devoted to various applications such as
actuarial and financial mathematics, queing theory, internet traffic and so on,
stressed the increasing role of heavy-tailed distributions.

Suppose that F is a distribution function (d.f.) and satisfies the following
relation for large values of x:

1− F (x) = x−αL(x),

where α > 0 and L is slowly varying:

lim
x→∞

L(tx)
L(x)

= 1 ∀t > 0.

Then α is called a tail index of the distribution.
Strictly speaking it should be called an index of the right tail, since we can

define an index of the left tail of a distribution in a similar way. As we see, tail
index reflects the fatness of the tail, determines the existence of the moments of
some order (evidently, the left tail must not be heavier than the right one), is
important in limit theorems for sum of i.i.d. random variables with this given
d.f., etc.

Therefore during the last three decades there were a lot of papers which dealt
with the estimation problem of the tail index. One of the first and probably the
most popular estimator for the parameter γ = 1/α was proposed by B.M. Hill in
[14]. This estimator is based on the order statistics Xn,1 ≤ Xn,2 ≤ . . . ≤ Xn,n
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from a sample X1, . . . , Xn of i.i.d. random variables with d.f. F . The estimator
has the form

γn,k =
1
k

k−1∑

i=0

log Xn,n−i − log Xn,n−k,

where k is some number satisfying 1 ≤ k ≤ n. The problem how to choose
k = kn is not a simple one (see, for example, [4], [7], [8], [9], [12], [11]) and there
were many papers devoted to this problem and to properties or modifications
of Hill’s estimator (see [1], [3], [13], [6], [19] and references therein).

In [5] and [18] it was proposed one more estimator which is based not on order
statistics and, very interesting to note, came when considering rather abstract
objects - random stable zonotopes (see [5]). The idea this new estimator is
based on and construction of the estimator are quite simple.

From now let N stand for the sample size. Assuming N = n ·m (in prac-
tice we choose m and then n = [N/m], where [·] stands for the integer part of a
positive number), we divide the sample into n groups V1, . . . , Vn, each group con-
taining m random variables. It’s required that variables would be independent
within a group and between the groups, for example V1 = {X1, . . . , Xm}, V2 =
{Xm+1, . . . , X2m} and so on. Let

M
(1)
ni = max{Xj : Xj ∈ Vi}

and M
(2)
ni - the second largest element in the same group Vi. Now let’s denote

κni =
M

(2)
ni

M
(1)
ni

, Sn =
n∑

i=1

κni, Zn = n−1Sn.

Then under mild conditions on m and n that both n and m → ∞ no slower
than some positive degree of N (e.g., n = CN b, b ∈ (0; 1), C > 0, and m =
[N/n] = [C−1N1−b]) one can verify (see [18]) that

Zn
a.s.−→ α

α + 1
.

This relation is nothing else as a strong law of large numbers for triangular array
of random variables κni, i = 1, . . . , n. Namely, in each row κni, i = 1, . . . , n,
are i.i.d. random variables and Eκni −→ α

1+α with N → ∞. Since N = n ·m,
it is clear that one of the problems is how to choose m and n. This problem
is similar to choose k in Hill’s estimator. Assuming the so-called second-order
asymptotic relation for tail of d.f., this problem was dealt with in [18].

Recently some effects in financial markets were explained by the change
of tail index in some time series. It is well-known that some quantities like
stock returns have heavy-tailed distributions. E.g., in the paper [20] we find
investigation of the financial crisis during 1997-1998 in some Asian markets.
Calculations given in [20] show that the data do not contradict the hypothesis
that there was a change in tail index.

Mathematically the problem can be formulated as follows. Suppose that
we are observing time series X1, X2, . . . , XN with distribution functions Fi,
i = 1, 2, . . . , N . We want to test the hypothesis that there is a change in tail
index in the sample, i.e. we want to check if there exist such number k, that
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F1 = F2 = . . . = Fk with tail index α1 and Fk+1 = Fk+2 = . . . = FN with tail
index α2; of course, α1 6= α2. If the data do not contradict hypothesis, then we
would like to estimate the location of the changepoint, i.e. to estimate k.

In the paper [20] Hill’s estimator is the main tool in testing this hypothe-
sis, and several procedures were proposed for testing the hypothesis about the
constancy of the tail index and location of the changepoint - recursive, rolling
and sequential. Recursive estimator uses the first [tn] elements of the sample,
step by step increasing t ∈ (0; 1). The rolling estimator fixes the subsample size
and estimates α rolled through time. The sequential test is constructed from
a pre-break and post-break estimators, i.e. the sequential pre-break estimator
is just the recursive estimator and the post-break estimator is the reverse re-
cursive estimator. In the same paper [20] one can find invariance principles for
estimators and rates of convergence.

The main goal of this short note is to exploit the new tail index estimator
from [18] for solving the problem of a changepoint in tail index. We propose the
procedure which reduces estimation of the tail index to detecting the change in
mean value. Therefore it is possible to apply well-known results, described in
[15].

Suppose that we observe random variables X
(N)
1 , X

(N)
2 , . . . , X

(N)
N with dis-

tribution functions F
(N)
i and there exists such unknown parameter 0 < τ < 1,

such that F
(N)
i for i = 1, . . . , [τN ] are the same and have tail index α1, and

F
(N)
i for i = [τN ] + 1, . . . , N are identical and have tail index α2. We can

assume that all variables are positive, because we are investigating the index
of the right tail only, so negative values can be dropped. We divide sample
into n groups V

(N)
1 , . . . , V

(N)
n , each group containing m random variables, as we

assume N = n ·m. Although all quantities below depend on N, dropping this
index let us denote

M
(1)
ni = max{Xj : Xj ∈ Vi}

and M
(2)
ni let be the second largest element in the same group Vi. Finally, we

denote

κni =
M

(2)
ni

M
(1)
ni

.

Now we have the following sequence of independent random variables κni: for
1 ≤ i ≤ k = [ [τN ]

m ] random variables κni are i.i.d. with expectation close to
β1 = α1/(1 + α1) and for k + 2 ≤ i ≤ n variables κni are i.i.d. with expectation
close to β2 = α2/(1 + α2). There is only one random variable κn,k+1 which can
be different from these of two groups, since it is constructed from the group,
containing random variables with both tail indexes α1 and α2. Neglecting this
variable we have standard problem of change in mean value, only in a triangular
array scheme.

It is known (see, for example, [15]) that for this problem the following statis-
tic can be used: for 1 ≤ j ≤ n − 1 and some parameter 0 ≤ ζ ≤ 1 let us
define

U
(n)
j =

(j(n− j)
n2

)1−ζ(1
j

j∑

i=1

κni − 1
n− j

n∑

i=j+1

κni

)
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and
τn =

1
n

min
{

i :
∣∣U (n)

i

∣∣ = max
1≤l≤n−1

∣∣U (n)
l

∣∣, 1 ≤ i ≤ n− 1
}

.

Similarly to nonparametric change-point estimation (see [2]), we prove that τn

is strongly consistent estimator for τ .
Theorem 1 Suppose that N → ∞ and m → ∞. If there exist b ∈ (0; 1) and
C > 0 such that n ≥ CN b, then τn

a.s.−→ τ .

We did not try to find the lowest possible growth of n and m in Theorem 1,
since it was not an object of the article.

In order to get the rate of convergence in the above formulated theorem, we
use general method from [10], where more general estimators of change-point
are considered.

In [10] a triangular array ξ
(n)
1 , . . . , ξ

(n)
n , n ≥ 2, of row-wise independent

random elements is considered. Suppose that ξ
(n)
1 , . . . , ξ

(n)
[τn] for some τ ∈ (0; 1)

have distribution ν1 and ξ
(n)
[τn]+1, . . . , ξ

(n)
n have distribution ν2,n. Let function

K : R2 → R be a measurable mapping (kernel) and define for t ∈ [0; 1]

rn(t) =





n−2
n∑

i=k+1

k∑
j=1

K
(
ξ
(n)
i , ξ

(n)
j

)
, t = k

n , k = 1, . . . , n− 1,

0, t = 0, 1,

rn

(
k
n

)
+ (nt− k)

(
rn

(
k+1

n

)− rn

(
k
n

))
, t ∈ (

k
n ; k+1

n

)
, k = 0, . . . , n− 1.

Finally, the estimator of τ is defined as τn = arg max
t∈[0;1]

w(t)|rn(t)|, where w :

[0; 1] → (0;∞) is a weight function. By taking the smallest maximizer for
convenience, τn will be unique.

In [10] it is required that the kernel K and the distributions ν1 and ν2,n

satisfy the following conditions.
Antisymmetry (A): K(x, y) = −K(y, x) ∀x, y ∈ R.
Moment condition (M): There exist real numbers a > 0 and M0 < ∞ such

that ∫ ∣∣K
∣∣2+a

dµ1 ⊗ µ2 ≤ M0, ∀µ1, µ2 ∈ {ν1, ν2,n}.

It is also required that the following functions exist:

R1(y) =
∫

K(x, y)ν1(dx), Rn(y) =
∫

K(x, y)ν2,n(dx).

Stability condition (S):
∫

fngn dPn → σ2, ∀fn, gn ∈ {R1, Rn}, Pn ∈ {ν1, ν2,n},

where σ2 =
∫

R2
1dν1. Furthemore, set

λn =
∫

Kdν2,n ⊗ ν1,

where it is assumed that λn 6= 0 ∀n ∈ N and λn → 0 in such a way that
λnn

1
2 →∞ as n →∞.
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Regularity condition (R): w : [0; 1] → (0;∞), w′ is bounded on [d; 1 − d]
for any positive d and continuous at τ . Furthermore, inf0≤t≤τ

(
tw(t)

)′
> 0 and

inf1−τ≤t≤1

(
w(t)(1− t)

)′
< 0.

Remark: in original paper [10] w′ is supposed to be bounded on (0; 1); from
the proof of the theorem and examples given there it is easy to see that correct
regularity condition must be stated as above.

Now we apply this result taking κni instead of ξ
(n)
i . Setting w(t) =

(
t(1 −

t)
)−ζ , K(x, y) = y−x and taking only discrete time moments t = k/n, actually

we have the definition of U
(n)
j . Let’s check the conditions (A), (M), (S) and (R)

in our case.
For the kernel K(x, y) = y − x antisymmetry is evident.
Because 0 ≤ κni ≤ 1, i = 1, . . . , n, functions R1(y), Rn(y) surely exist (we

remind, that we assume that all Xj are positive). Moment condition is also
satisfied, e.g. by taking a = M0 = 1.

Because w(t) =
(
t(1− t)

)−ζ , we have

w′(t) = −ζ
1− 2t(

t(1− t)
)1+ζ

,

(
tw(t)

)′ =
1− ζ − t(1− 2ζ)

tζ(1− t)1+ζ
,

(
w(t)(1− t)

)′ =
−ζ − t(2ζ − 1)
t1+ζ(1− t)ζ

.

It is easy to see that the weight function satisfies the conditions of regularity.
Finally, let’s denote βi = αi/(1+αi) and σ2

i = αi/
(
(1+αi)2(2+αi)

)
, i = 1, 2.

β1 and σ1 are the limit mean value and variance of κnj for j before the change
and β2 and σ2 are corresponding values after the change. This means that not
only expectation, but also variances are changing in the sample. So in our case
stability condition (S) is not satisfied. But this condition was essential in the
case when ν2,n weakly converges to ν1 and λn → 0 (this is more difficult case,
allowing distributions before the change and after the change to become closer
and closer), while in our case λn = Eκn1 − Eκnn → β1 − β2 6= 0. Therefore
by checking all steps in the proof of Theorem 1.1 from [10] we shall show that
stability condition is not needed in our case.

Theorem 2 Let κni for 1 ≤ i ≤ k = [τn] be i.i.d. random variables with
expectation β

(n)
1 and for k +1 ≤ i ≤ n - with expectation β

(n)
2 . If β

(n)
1 → β1 and

β
(n)
2 → β2 as n →∞, then

n(β1 − β2)2(τn − τ) d→ χ(Y ),

where χ(Y ) is the (a.s) unique maximizer of the process Y (t) = W (t) + h(t),
t ∈ R. Here W is a two-sided Brownian motion on R and the drift function

h(t) =
{ −σ−1

2

(
τ + ζ(1− 2τ)

)
t, t ≥ 0,

σ−1
1

(
1− τ − ζ(1− 2τ)

)
t, t < 0.

Application of the theorem is described below.
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2 CHANGE OF TAIL INDEX DURING ASIAN FINANCIAL
CRISIS

Crisis of Asian financial markets in the middle of 1997 is an interesting
example of structural change. Rapid growth of economics stimulated investors to
expand production and to take credit risks. However, such growth of economics
couldn’t last forever. On July 2, 1977 Thailand devalued its currency against
the US dollar, and it was the beginning of a serious crisis in the whole Asian
region.

Daily stock price indices of Asian countries during 1996-1998 allow us to
investigate the situation. Since the data is easily available on internet, the main
thing is a choice of the method for detecting the change point in tail index. To
choose the best method is not a simple question.

During the crisis one can observe more intense fluctuation of stock market
prices. To be more exact, daily returns are supposed to have heavy-tailed dis-
tribution. Despite limited number of observations, calculations usually indicate
high probability of structural change. It is nothing else than evidence of change
in a tail index of the distribution - decrease of the tail index means heavier tail.

In Picture 1 there are daily returns of Kuala Lumpur Composite Index
(KLCI), calculated in Malaysian stock exchange. It is easy to see that there
is structural change in the data. For this data we shall apply our results.

Picture 1. Daily returns of KLCI during 1996-1998

It is easy to notice that using the definition of U
(n)
j and taking ζ = 0 we

have

j(n− j)
n2

(1
j

j∑

i=1

κni − 1
n− j

n∑

i=j+1

κni

)
=

=
j(n− j)

n2

(1
j

j∑

i=1

κni − 1
n− j

(
n∑

i=1

κni −
j∑

i=1

κni)
)

=

=
j(n− j)

n2

( n

j(n− j)

j∑

i=1

κni − 1
n− j

j∑

i=1

κni

)
=

=
1
n

( j∑

i=1

κni − j

n

n∑

i=1

κni

)
.

Now assuming that there is no change of distribution within Xn1, . . . , Xnn

and denoting standard deviation of Xni by σ, we see that
√

n

σ
rn(t) → W 0(t)
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in distribution as n →∞, where W 0(t) is a Brownian bridge, t ∈ [0; 1]. There-
fore we have that

sup
t∈[0;1]

√
n

σ
|rn(t)| d→ sup

t∈[0;1]

|W 0(t)|.

Define
D = sup

t∈[0;1]

|W 0(t)|.

The distribution function of this random variable is well known:

FD(x) =





1 + 2
∞∑

k=1

(−1)ke−2k2x2
, x ≥ 0,

0, x < 0.

The series is extremely rapidly converging - usually a few terms suffice for very
high accuracy.

Now we are ready to apply a test for the null hypothesis that the tail index of
KLCI daily returns is constant over time. Having 744 daily observations of the
index during 1996-1998, we divide them into n groups each having m random
variables. For visual purposes taking m = 13, by procedure described at the
begining of the article we get 57 random variables κni, i.e. i = 1, . . . , 57. Then
we calculate rn(t)

√
n/σ, the graph of this function is given below:

Picture 2. Graph of rn(t)n
1
2 σ−1

As we see, at the point t = 31/57 we have maximum value 1.47. The 95%
critical value of D is 1.36, so we able to reject the null of the constancy of the
tail index for the distribution of KLCI daily returns.

Tabulating random variable χ(Y ) as it is defined in Theorem 2, we should
even be able to construct confidence intervals for the changepoint. However,
tabulation process is not easy. It is much more important to notice that the de-
tected changepoint t = 31/57 actually means the middle of 1997, which actually
is the beginning of the Asian crisis.

Here one remark is appropriate. Both in [20] and in our paper the data of
Asian financial crisis was analysed assuming the presence of one change point. It
seems that a more realistic assumption would be to assume that at the beginning
of the crisis the tail index had increased, but after short period, when some
measures of stabilization in the financial market were taken, then the tail index
had returned to the previous level (the so-called epidemic behaviour). But to
detect such behaviour is more difficult and different approach is used.
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This can be seen from the following effect: if we take the data corresponding
to longer period, we shall not reject the null hypothesis. On the other hand, if
we take simulated data with one change point, then it is easy to see that longer
samples give the better results.

3 PROOFS

Proof of Theorem 1. From the well-known criteria (see, for example, [17])
we have that the statement τn

a.s→ τ is equivalent to the following relation: for
any ε > 0

P
(
ω : sup

m≥l
|τm(ω)− τ | ≥ ε

) → 0, (1)

as l →∞.
Suppose that (1) does not hold, that is, there exist such ε > 0, δ > 0 and

subsequence (lj):

P
(
ω : sup

m≥lj

|τm(ω)− τ | ≥ ε
) ≥ δ ∀j. (2)

Let’s notice that sets Aε
l =

{
ω : supm≥l |τm(ω) − τ | ≥ ε

}
are monotonous,

i.e. Aε
1 ⊃ Aε

2 ⊃ . . . ⊃ Aε
l ⊃ Aε

l+1 ⊃ . . . . So (2) can be written as follows: there
∃ε > 0 and δ > 0 such that for all l

P
(
Aε

l

) ≥ δ. (3)

Denote V ε = lim sup
l→∞

Al, P (V ε) ≥ δ.

Here and in what follows all limits are as n → ∞. For k = [τn] applying
strong law of large numbers we have

∣∣U (n)
k

∣∣ a.s.→ A,

where A =
(
τ(1− τ)

)1−ζ |β1 − β2|.
Taking k = [tn], t > τ , one can make sure that

∣∣U (n)
k

∣∣ a.s.→ (
t(1− t)

)1−ζ τ

t
|β1 − β2| =

(τ

t

)ζ( 1− t

1− τ

)1−ζ

A. (4)

Similarly taking k = [tn], t < τ , we have

∣∣U (n)
k

∣∣ a.s.→ (
t(1− t)

)1−ζ 1− τ

1− t
|β1 − β2| =

(1− τ

1− t

)ζ( t

τ

)1−ζ

A. (5)

If ω ∈ V , there exists subsequence
(
τmi(ω)

)
such that |τmi(ω) − τ | ≥ ε ∀i.

Since V is a set of non-zero probability, for any ω ∈ V due to relations (4) and
(5) we have that ∀η > 0 there ∃I > 0 such that for i ≥ I and τmi(ω) ≥ τ + ε

∣∣∣U (mi)
[τmi

(ω)n] −
( τ

τmi(ω)

)ζ(1− τmi(ω)
1− τ

)1−ζ

A
∣∣∣ < η.

Similarly if τmi(ω) ≤ τ − ε, we have
∣∣∣U (mi)

[τmi
(ω)n] −

( 1− τ

1− τmi(ω)

)ζ(τmi(ω)
τ

)1−ζ

A
∣∣∣ < η.
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Because function
(
τ/x

)ζ((1−x)/(1− τ)
)1−ζ is decreasing in x and function(

(1− τ)/(1− x)
)ζ(

x/τ
)1−ζ is increasing in x, therefore, if τmi

(ω) ≥ τ + ε, then

( τ

τmi(ω)

)ζ(1− τmi
(ω)

1− τ

)1−ζ

≤
( τ

τ + ε

)ζ(1− τ − ε

1− τ

)1−ζ

< 1,

and if τmi(ω) ≤ τ − ε, then

( 1− τ

1− τmi
(ω)

)ζ(τmi
(ω)
τ

)1−ζ

≤
( 1− τ

1− τ + ε

)ζ(τ − ε

τ

)1−ζ

< 1.

Then two last inequalities mean that limits in relations (4) and (5) are strictly
less than A, and we get contradiction to our assumption (3) (which was shown
to be equivalent to (2)).

Proof of Theorem 2. Assume β1 < β2. Define λn = β
(n)
1 − β

(n)
2 and

Λn =
{

i
n : i = 1, 2, . . . , n

}
. Since

τn = arg max
t∈Λn

w(t)|rn(t)|

and rn(t) will be negative for large values of n (since the sign of rn(t) is defined
by β1 − β2), we introduce

τ̃n = arg min
t∈Λn

w(t)rn(t).

First we show that τn and τ̃n are asymptotically equal in probability. Set

cn =
1
2
w

( [nτ ]
n

)∣∣λn

∣∣ [nτ ]
n

(
1− [nτ ]

n

)
.

Then

P
(
τn 6= τ̃n

) ≤ P
(

max
t∈Λn

w(t)rn(t) ≥ − min
t∈Λn

w(t)rn(t)
)
≤

≤ P
(
− min

t∈Λn

w(t)rn(t) ≤ cn

)
+ P

(
max
t∈Λn

w(t)rn(t) ≥ cn

)
.

Since

Ern(τ) = n−2
n∑

i=[nτ ]+1

[nτ ]∑

j=1

E(κnj − κni) = λn
[nτ ]
n

(1− [nτ ]
n

)

and λn < 0 for large values of n, we see that cn = − 1
2w

( [nτ ]
n

)
Ern(τ). Now

P
(

min
t∈Λn

w(t)rn(t) ≥ −cn

)
≤ P

(
w

( [nτ ]
n

)
rn(τ) ≥ −cn

)
=

= P
(
w

( [nτ ]
n

)(
rn(τ)− Ern(τ)

) ≥ w
( [nτ ]

n

)∣∣λn

∣∣ [nτ ]
n

(
1− [nτ ]

n

)− cn

)
=

= P
(
w

( [nτ ]
n

)
n1/2

(
rn(τ)− Ern(τ)

) ≥ n1/2cn

)
.

Because n1/2
(
rn(τ)−Ern(τ)

)
converges in distribution to a normal distribution

and n1/2cn → ∞, it follows that P
(
mint∈Λn w(t)rn(t) ≥ −cn

) → 0 as n → ∞.
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In a similar way we show P
(
maxt∈Λn w(t)rn(t) ≥ cn

) → 0. This proves that
lim

n→∞
P

(
τn 6= τ̃n

)
= 0.

For t ∈ R introduce

Yn,w(t) = nλn

(
rn,w(τ + λ−2

n n−1t)− rn,w(τ)
)

with rn,w(t) = w(t)rn(t).
We will show that

EYn,w(t) → σ(t)w(τ)h(t), (6)

where σ(t) = σ1I{t<0} + σ2I{t≥0}. Note that after multiplying h(t) by σ(t)
there is no σ(t) left in the expression, because actually we have σ−1(t) in the
definition of h(t). Such definition is used only to have the results in a simpler
form.

The proof of (6) is straightforward. Denote ∆n(t) = τ + λ−2
n n−1t. Then

Yn,w(t) = nλn

(
rn,w

(
∆n(t)

)− rn,w(τ)
)

=

= nλn

(
rn

(
∆n(t)

)
w

(
∆n(t)

)− rn(τ)w(τ)
)

=

= nλn

(
rn

(
∆n(t)

)
w

(
∆n(t)

)− rn

(
∆n(t)

)
w(τ) + rn

(
∆n(t)

)
w(τ)− rn(τ)w(τ)

)
=

= nλn

(
rn

(
∆n(t)

)
w′

(
ϕn(t)

)
λ−2

n n−1t + w(τ)
(
rn

(
∆n(t)

)− rn(τ)
))

,

where ϕn(t) is a point between τ and ∆n(t). Note that when n → ∞, we
have ∆n(t) → τ , therefore w′

(
ϕn(t)

) → w′(τ) and Ern

(
ϕn(t)

) → Ern(τ) =
τ(1− τ)λn.

We also use equalities (1) and (2). It’s easy to derive that for t ≥ 0

Ern

(
∆n(t)

)−Ern(τ) → ∆n(t)
(
1−∆n(t)

) τ

∆n(t)
λn−τ(1−τ)λn = −τλ−1

n n−1t,

and for t < 0 we have

Ern(∆n(t))− Ern(t) → ∆n(t)(1−∆n(t))
1− τ

1−∆n(t)
λn − τ(1− τ)λn =

= (1− τ)λ−1
n n−1t.

From these relations we get

EYn,w(t) → g(t) =
{ −τtw(τ) + τ(1− τ)tw′(τ), t ≥ 0,

(1− τ)tw(τ) + τ(1− τ)tw′(τ), t < 0.

Taking w(t) =
(
t(1− t)

)−ζ we see that g(t) = w(τ)h(t) and (6) is proved.

Define Xn,w = Yn,w − EYn,w and denote by Yn and Xn the corresponding
processes with the weight function w(t) ≡ 1. Then

{
Xn(t) : −d ≤ t ≤ d

}
,

n ≥ N0(d), is asymptotically C-tight for all d > 0. The proof is given in [10].
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We prove that Xn(t) d→ σ(t)W (t). Define nt = [nτ + λ−2
n t]. Then let us

consider the case t ≥ 0:

Yn(t) = λnn
(
rn(τ + λ−2

n n−1t)− rn(τ)
)

=

= λnn−1
( n∑

i=nt+1

nt∑

j=1

K(Xi, Xj)−
n∑

i=[nτ ]+1

[nτ ]∑

j=1

K(Xi, Xj)
)

=

= λnn−1
((

nt − [nτ ]
) n∑

i=nt+1

Xi −
(
n− nt

) nt∑

j=[nτ ]+1

Xj −

− [nτ ]
nt∑

i=[nτ ]+1

Xi +
(
nt − [nτ ]

) [nτ ]∑

j=1

Xj

)
= B

(n)
1 + B

(n)
2 ,

where
B

(n)
1 = λnn−1

(
nt − [nτ ]

) ∑

i 6∈
(
[nτ ]+1,nt

) Xi

and

B
(n)
2 = λnn−1

(
n + [nτ ]− nt

) nt∑

i=[nτ ]+1

Xi.

Taking into account the definition of nt, it is not difficult to verify that V arB
(n)
1 →

0 and V arB
(n)
2 → tσ2

2 as n →∞. Since we have shown that Yn(t) is expressed
as a sum of two summands with the variance of the first summand tending to
zero, it is clear that finite-dimentional distributions of Yn(t) are defined by cor-
responding distributions of the second summand. Standard argument gives us
that that in the limit we have Gaussian distribution. For t < 0 after identical
calculations we have V arYn(t) → tσ2

1 . Combining tightness of Xn(t) and the
fact that V arYn(t) → tσ2(t), Xn(t) d→ σ(t)W (t) as n →∞.

The next step is to show that for all d > 0 Yn,w converges to the process
Ỹ = σw(τ)

(
W + h

)
in distribution in the space C[−d, d]. We have

Yn,w(t) = w(τ)Yn(t) + nλn

(
w

(
∆n(t)

)− w(τ)
)
rn

(
∆n(t)

)
,

Xn,w(t) = Yn,w(t)− EYn,w(t) =

= w(τ)Xn(t) + nλn

(
w

(
∆n(t)

)− w(τ)
)(

rn

(
∆n(t)

)− Ern

(
∆n(t)

))
. (7)

Applying mean-value theorem from analysis, the second summand is equal
to

n−1/2λ−1
n w′

(
ϕn(t)

)
tn1/2

(
rn

(
∆n(t)

)− Ern

(
∆n(t)

))
,

where ϕn(t) is a point between τ and ∆n(t). The factor n−1/2λ−1
n w′

(
ϕn(t)

)
t

converges to zero uniformly on [−d, d] and n1/2
(
rn

(
∆n(t)

)−Ern

(
∆n(t)

))
con-

verges in distribution to a normal distribution. Therefore Xn,w(t) = w(τ)Xn(t)+

oP (1). Recall that EYn,w(t) → σ(t)w(τ)h(t) and Xn
d→ σW . Since Yn,w(t) =

Xn,w(t) + EYn,w(t), we have

Yn,w
d→ Ỹ = w(τ)σW + σw(τ)h = σw(τ)

(
W + h

)
,

11



as n →∞.

Having proved this relation the rest of the proof goes along the lines of the
proof of Theorem 1.1 from [10]. Namely, we use lemmas 2.6, 2.7 and 2.8 taken
from [10].

By lemma 2.6 the process Ỹ is continuous and has the unique minimizer
almost surely.

Furthermore, we define S(f) =
{
t ∈ R : f(t) = infs∈R f(s)

}
for f ∈ RR

and M =
{
f ∈ RR : S(f) 6= ∅ is closed

}
. Let ψ : M → R be given by

ψ(f) = min S(f). Let us choose t from the following relation τ̃n = τ +λ−2
n n−1t.

Then taking into account definition of τ̃n we see that

nλ2
n(τ̃n − τ) = ψ(Yn,w).

By lemma 2.7 in [10] the random variable ψd

(
Ỹ

)
is continuous, here ψd : Md →

R and Md is defined in the same way as M , only instead of RR we take C[−d, d].
Finally, for d > 0 we introduce An,d =

{
ψ(Yn,w) 6= ψd(Yn,w)

}
. By lemma

2.8 in [10] ∀d > 0 there ∃C > 0, which does not depend on d or n, and n0 ∈ N
such that

P (An,d) ≤ Cd−1, ∀n ≥ n0.

Now we are ready to complete the proof of the theorem. Denote distribu-
tion functions of ψ

(
Ỹ

)
, ψ(Yn,w), ψd(Yn,w) and ψd

(
Ỹ

)
by F , Fn, Fn,d and Fd

respectively. Then
∣∣Fn(t)− F (t)

∣∣ ≤ ∣∣Fn(t)− Fn,d(t)
∣∣ +

∣∣Fn,d(t)− Fd(t)
∣∣ +

∣∣Fd(t)− F (t)
∣∣.

For n ≥ n0 and d > 0 we have
∣∣Fn(t)− Fn,d(t)

∣∣ =
∣∣∣P

(
ψ(Yn,w) ≤ t

)− P
(
ψd(Yn,w) ≤ t

)∣∣∣ ≤ 2P (An,d) ≤ Cd−1.

Because Yn,w
d→ Ỹ as n → ∞,

∣∣Fn,d(t) − Fd(t)
∣∣ → 0 for all t ∈ R as Fd is

continuous.
Since ψd

(
Ỹ

)
converges almost surely and therefore in distribution to ψ

(
Ỹ

)
as d →∞,

∣∣Fd(t)− F (t)
∣∣ → 0 for every continuity point t of F .

So we have ψ(Yn,w) d→ ψ
(
Ỹ

) d= χ(Y ). Because

ψ
(
Ỹ

)
= ψ

(
σw(τ)

(
W + h

))
= ψ(W + h),

that ends the proof.
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