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1 Introduction and formulation of results

We consider a real-valued random field Xk̄ with k̄ ∈ Zd, satisfying the
following relation

Xk̄ =
∑
b̄∈Λ

ab̄Xk̄−b̄ + εk̄, (1)

where k̄ = (k1, . . . , kd), b̄ = (b1, . . . , bd), k̄ − b̄ = (ki − bi, i = 1, . . . , d), Λ
is some subset of (Z)d \ {0̄} and εk̄, k̄ ∈ Zd, are independent, identically
distributed (iid) random variables with finite second moment. It seems that
in literature most commonly used name for such fields (of course, with much
more general assumptions on random variables εk̄) is spatial autoregressive
process (see, for example, [1] and references therein) and in analogy with
standard notation in time series AR(p), ARMA(p, q) we shall denote such
process by SAR(d, Λ), showing two main parameters d and Λ, or if dimension
d is fixed, simply SAR(Λ). During last decades such processes, especially
in case d = 2 were rather deeply investigated, there is a vast literature
devoted to SAR processes, starting with fundamental paper by Whittle [18],
later most papers appearing mainly in engineering literature (IEEE journals
and proceedings). This is due to the fact that most applications (image
recognition, segmentation and restoration, textures models, etc.) deal with
models with indices on plane. Also one can mention the so-called time-space
auto-regression models, which formally can be considered as SAR models,
but they are specific in a sense that one coordinate of indices is separated
and denotes time, while the others are used to index variables in ”space” (or
fixed locations, in this case the term ”panel data” is used). In such models
there is usual lag in time and lag in space, which generally is defined by the
so-called weight matrix (see [4] or recent paper [8], where such models are
discussed).

While in time series there is the natural notion of ”past” and ”future”, in
case of multidimensional index there is no natural such notion, therefore it is
not easy to say what sets Λ could be considered as natural. One possible way
is to consider requirement Λ ⊂ (Z+)d \ {0̄}, this will lead to the so-called
quarter-plane autoregressive models. Another class of examples of SAR
processes are so called nonsymmetric half-plane models, in which a set Λ is
defined in more complicated way. Mathematical theory of these processes is
very well developed (see, for example, [6], [11], [12] and references there). In
this paper we shall consider only quarter-plane autoregressive models. Also
we shall consider only sets Λ consisting of finite number of elements and we
denote m = m(Λ) = |Λ|, where |Λ| stands for the number of elements of a
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set Λ. Here are some examples of sets, satisfying this condition:

Λp =
{

b̄ ∈ Zd, bi ≥ 0, i = 1, . . . , d, 0 <
d∑

i=1

bi ≤ p
}

,

Λn̄ =
{

b̄ ∈ Zd, 0 ≤ bi ≤ ni, i = 1, . . . , d,

d∑
i=1

bi > 0
}

,

In what follows we shall drop the bar in the notation for multi-indices if this
will not cause ambiguity.

We consider estimation of the parameters of the model (1), assuming
that the vector of these parameters a = (ai, i ∈ Λ) is such that there exists
unique stationary solution of (1) which is given by infinite series

Xk =
∑
i∈Zd

+

biεk−i,

with
∑

i∈Zd
+

b2
i < ∞. As far as we know, at present necessary and sufficient

conditions for the existence of a stationary solution are known only in case
d = 2. There are known necessary or sufficient conditions, for example, a
sufficient condition is

∑
i∈Λ |ai| < 1.

Suppose, that we observe values of Xk from (1) with k ∈ Dn ⊂ Zd,
where Dn is a sequence of sets such that bn := |Dn| → ∞ as n →∞. Later
on we shall impose additional conditions on Dn. There are several types of
estimators of the vector of parameters a, most common are Least Squares
(LS), Yule-Walker (YW) type, and Maximum likelihood (ML) estimators.
In [15], [16] it was stated that LS and YW estimates are asymptotically the
same and for small samples and strongly correlated series YW estimates
can be considerably more biased (see also [17] and [9]). Recently Basu
and Reinsel claimed (see [2]) that in [15] in the proof there is an error and
Gaussian asymptotic distribution of YW estimator contains an asymptotic
bias term.

We consider LS estimators of the parameter a = (ai, i ∈ Λ) of the model
(1). Namely, let ân = (ân,i, i ∈ Λ) be the value of a = (ai, i ∈ Λ) which
minimizes the function

F (a) =
∑

k∈D∗
n

(
Xk −

∑
i∈Λ

aiXk−i

)2
,

where D∗
n = ∩i∈Λ∪{0}{Dn + i} (the meaning of the set D∗

n is such that if
k ∈ D∗

n, then k ∈ Dn and k − i ∈ Dn for all i ∈ Λ). Thus the estimator â is
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obtained as a solution of the system of linear equations

∂F (a)
∂ai

= 0, i ∈ Λ,

and this system can be written as∑
j∈Λ

aj

∑
k∈D∗

n

Xk−jXk−i =
∑

k∈D∗
n

XkXk−i, i ∈ Λ. (2)

In order to write (2) in usual matrix form we write a = (ai, i ∈ Λ) as a
vector. We recall that m = |Λ| and let ϕ : Λ → {1, 2, . . . ,m} be one-to-one
mapping and if ϕ(i) = j, i ∈ Λ, 1 ≤ j ≤ m, then ϕ−1(j) = i. Using
this mapping we can write a = (a(1), . . . , a(m)), where a(j) = aϕ−1(j), and
ân = (ân(1), . . . , ân(m)). Since this mapping will be fixed for all the rest
of the paper, we shall use also previously introduced more simple notation
ân,i, i ∈ Λ for the vector ân, understanding that ân,i = ân(ϕ(i)). This
remark applies for other vectors to be introduced later. Denote by Xn a
matrix of the order m × m with elements Xn(k, l), k, l = 1, . . . ,m, where
Xn(k, l) = Xn,i,j with k = ϕ(i), l = ϕ(j) and

Xn,i,j =
∑

k∈D∗
n

Xk−jXk−i, i, j ∈ Λ.

Let Yn stand for the vector Yn(j), 1 ≤ j ≤ m with Yn(j) = Yn,i, ϕ(i) = j,
and

Yn,i =
∑

k∈D∗
n

XkXk−i, i ∈ Λ.

Then system (2) can be written as

Xnân = Yn. (3)

Substituting to the right side of (3) instead of Xk its expression (1), we get

Xn(ân − a) = Wn, (4)

where Wn = {
∑

k∈D∗
n

εkXk−i, i ∈ Λ}. If we denote b∗n = |D∗
n|, then from

(4) it follows

(b∗n)1/2(ân − a) =
(
b∗n
−1Xn

)−1(b∗n)−1/2Wn.

Traditional way (see [15], [16] and other authors) to obtain asymptotic nor-
mality of LS estimator ân is to prove the following two relations

b∗n
−1Xn

P−→ X0 (5)
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(or a.s.) and
(b∗n)−1/2Wn

d→ W0, (6)

where d→ and P−→ stands for the convergence in distribution and in probabil-
ity, respectively. But in this way the covariance matrix of the limit Gaussian
mean zero vector W0 depends on unknown parameters σ2 and a. Namely, due
to the fact that summands in the sum Wn are stationary and uncorrelated
(this follows from independence of random variables εi, i ∈ Zd) the covari-
ance matrix of a limit normal law is σ2R0, where R0 = cov(Xk−i, i ∈ Λ).
Clearly, matrix R0 is a function (and rather complicated) of coefficients a.
In order to get limit distribution independent of unknown parameters we use
some kind of self-normalization. By means of observed values {Xk, k ∈ Dn}
and constructed LS estimator ân we define empirical residuals

ε̂k = Xk −
∑
i∈Λ

ân,iXk−i, k ∈ D∗
n

and the estimator for unknown σ2

σ̂2
n = (b∗n)−1

∑
k∈D∗

n

(ε̂k − ε̄n)2,

where
ε̄n = (b∗n)−1

∑
k∈D∗

n

ε̂k.

Let R̂n = {r̂(p,q)
n , p, q = 1, . . . ,m}, where r̂

(p,q)
n = r̂n,ϕ−1(p),ϕ−1(q) and

r̂(n,i,j) = (b∗n)−1
∑

k∈D∗
n

(Xk−i − X̄k−i)(Xk−j − X̄k−j), i, j ∈ Λ,

X̄k−i = (b∗n)−1
∑

k∈D∗
n

Xk−i.

Finally we introduce conditions on Dn and Λ. For x ∈ Rd let ‖x‖∞ =
max1≤j≤m |xj | and let B(r, c) stand for the closed ball of radius r and center
c with respect to ‖ · ‖∞, B(r) := B(r, 0). For any Γ ⊂ Zd let

∂Γ = {i ∈ Γ : ∃ j ∈ Zd such that j /∈ Γ and ‖i− j‖∞ = 1}

and for a ≥ 1

∂aΓ = {i ∈ Zd : i + B(a) ∩ Γ 6= ∅ and i + B(a) ∩ Γc 6= ∅}.
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For convenience of formulations we make convention ∂0Γ := ∂Γ. Inner radius
of a set C ⊂ Zd is defined as follows

ρ(C) = sup{r : ∃ c such that B(r, c) ∩ Zd ⊂ C}.

Condition (A) on Dn: Dn for all n is bounded, |Dn| → ∞, and

|Dn|−1|∂Dn| → 0, as n →∞

In Proposition 6 we show that if sets Dn for all n are convex and bounded
and |Dn| → ∞, then they satisfy condition (A).

Now we are able to formulate our main result.

Theorem 1. Let Xk, k ∈ Dn be observed values from the model (1), for
which we assume that εi, i ∈ Zd are iid with mean zero and finite variance
σ2 and the vector of parameters a is such, that (1) has a stationary solution.
If Dn satisfy condition (A) and Λ is finite then

σ̂−1
n b1/2

n R̂1/2
n (ân − a) d−→ W̃0, (7)

where W̃0 is mean zero Gaussian vector with identity covariance matrix.

Comparing with previous results of [15], [16] or [2] the novelty of our
result is the limit Gaussian law, not depending on unknown parameters
of the model under consideration. Also we consider more general sets Dn

and for the proof of the theorem we use existing results in limit theorems
for weakly dependent random fields. Namely, we show that rather straight
application of CLT result from Dedecker’s paper [5] (see Theorem 8 bellow)
proves (6) while results from ergodic theory for stationary fields give us (5)
and other LLN type relations.

2 Auxiliary results

In this section we collect results which are main ingredients in the proof
of our theorem. We start with some results from ergodic theory (see, for
example [10]).

Let ξ = {ξi, i ∈ Zd} be a stationary random field with values in R
(Theorem 2 and its corollary holds for random fields with values in Rm, but
for our purposes it is sufficient to take m = 1). Let τj , j ∈ Zd, stand for
the translation operator, defined on (R)Zd

: τj(ξ) = {ξi+j , i ∈ Zd}. Denote
by T σ-algebra of invariant sets: a set A ∈ T if and only if τj(A) = A for
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all j ∈ Zd. The σ-algebra of invariant sets of a random field ξ is defined as
ξ−1(T ). The random field ξ is called ergodic if its σ-algebra of invariant sets
ξ−1(T ) is trivial. For example, if {ξi, i ∈ Zd} are i.i.d. random variables,
then ξ is stationary ergodic random field. If η = {ηi = g(τi(ξ)), i ∈ Zd},
where g – any measurable mapping from (R)Zd

to any measurable space and
if ξ is ergodic, then η is ergodic too. Main result which will be used in our
proof can be formulated as follows.

Theorem 2. (Corollary 14.A5 p.304 in [7]) Let ξ = {ξi, i ∈ Zd} be a
stationary random field with values in R and E|ξi| < ∞. Let Dn ⊂ Zd, n ≥
1, be a sequence of bounded (or finite, which is the same) sets such that
bn = |Dn| → ∞ and for any fixed i ∈ Zd

|(Dn + i)∆Dn|
|Dn|

→ 0, (8)

as n →∞. Then

ξ̄n := b−1
n

∑
i∈Dn

ξi
L1−→ E(ξ0| ξ−1(T )). (9)

Corollary 3. Suppose that ξ = {ξi, i ∈ Zd} is a stationary ergodic random
field with values in R and g : (R)Zd → R is integrable. If sequence Dn, n ≥ 1
is as in Theorem 2, then

b−1
n

∑
i∈Dn

g(τi(ξ))
L1−→ Eg(ξ). (10)

Remark 4. Although in [7] these results for simplicity were formulated for
increasing sequence of cubes, but it is easy to see (and it is mentioned at
the end of the corresponding chapter in the book) that one can take sets
Dn, satisfying condition (8).

Now we shall formulate some useful properties of sets Dn, satisfying
condition (A).

Proposition 5. Suppose that sets Dn satisfy condition (A). Then
a) for any m ≥ 1

∂m(Dn) ⊂ ∪|i|≤1∂m−1(Dn + i), (11)

therefore there exists a constant C(d, m), depending on d and m, but not on
n, such that

|∂m(Dn)| ≤ C(d,m)|∂Dn|; (12)

b) the relation ρ(Dn) →∞ holds;
c) the relation (8) holds.
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Proof. We want to prove (11) and at first consider m ≥ 2. Let x ∈
∂m(Dn), this means that

i + B(m) ∩Dn 6= ∅ and i + B(m) ∩Dc
n 6= ∅. (13)

Suppose, that x does not belong to the union of sets on the right-hand side
of (11), that is , for all i, |i| ≤ 1

x /∈ ∂m−1(Dn + i).

It is easy to see that this is equivalent to one of the following two relations:

(x− i) + B(m− 1) ⊂ Dn or (x− i) + B(m− 1) ⊂ Dc
n.

Since |i| ≤ 1 and m− 1 ≥ 1, then⋂
|i|≤1

{(x− i) + B(m− 1)} 6= ∅,

therefore we have that either

(x− i) + B(m− 1) ⊂ Dn for all i, |i| ≤ 1,

or
(x− i) + B(m− 1) ⊂ Dc

n for all i, |i| ≤ 1.

In the first case we get that x+B(m) ⊂ Dn, in the second one - x+B(m) ⊂
Dc

n, and both cases contradict (13). The obtained contradiction proves (11)
in case m ≥ 2. The case m = 1 must be considered separately, since
definition of ∂Dn is not obtained from definition of ∂mDn, taking m = 0.
But the changes in the proof are simple, so we do not provide the proof of
this case.

Now we shall prove b). Suppose that sets Dn satisfy condition (A), but
ρ(Dn) ≤ c for all n with some finite constant c. Let us denote c1 = c + 1
and take x1 ∈ Dn and B(c1, x1). Since ρ(Dn) ≤ c there is an element
y1 ∈ ∂Dn∩B(c1, x1). Now take B(2c1 +1, x1) and without loss of generality
we may suppose that |Dn| is sufficiently large, that Dn ∩B(2c1 +1, x1) 6= ∅.
Then we take x2 ∈ Dn \B(2c1 +1, x1) and we find y2 ∈ ∂Dn∩B(c1, x2), and
y2 6= y1, since B(c1, x1) ∩B(c1, x2) = ∅. Continuing this process after some
steps (but this process will stop, since Dn is finite) we get a set of elements
y1, y2, . . . , ykn , which are all different and belong to ∂Dn, therefore we have

|∂Dn| ≥ kn.
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On the other hand, since the process had stopped, we have
⋃kn

i=1 B(2c1 +
1, xi) ⊃ Dn, therefore

|Dn| ≤ kn(2(2c1 + 1))d.

From the last two estimates we get

|∂Dn|
|Dn|

≥ 1
(2(2c1 + 1))d

,

but this contradicts condition (A).
It remains to prove c). Let i be fixed, ||i|| = m, we shall prove that

(Dn + i)∆Dn ⊂ ∂mDn ∪ ∂m(Dn + i). (14)

Let x ∈ (Dn + i)∆Dn and suppose that x ∈ Dn, but x /∈ Dn + i. From these
two relations it follows that

x + B(m) ∩Dn 6= ∅ and x + B(m) ∩Dc
n 6= ∅

and, therefore, x ∈ ∂mDn. The case x ∈ Dn + i, but x /∈ Dn can be
considered in a similar way, we get in this case x ∈ ∂m(Dn + i), and relation
(14) is proved. From this relation, inequality (12) and condition ((A) we
get relation (8). The proposition is proved.

Proposition 6. If sets Dn, n ≥ 1 are convex (the convexity of a set D ⊂ Zd

is understood as follows: there exists a convex set V ⊂ Rd such that D =
V ∩ Zd) and |Dn| → ∞, then for any fixed l ≥ 1

(bn)−1|{∂lDn}| → 0, (15)

and, in particular, sets Dn satisfy (A).

The proof of this result is based on classical Gauss argument, and the
result itself most probably is known. But since it is easier to proof it than
to find appropriate reference, we provide the sketch of the proof. It is clear
that the convex body Vn which is in definition of convexity of Dn is simply
convex hull of points from Dn. Then

|∂lDn| = vol(∪i∈∂lDnB(i, 1/2)) ≤ vol((∂Vn)2l
√

d),

here Aε stands for usual (with respect to Euclidean distance) ε-neighborhood
of a set A ⊂ Rd, ∂A and vol(A) denote a boundary and d-dimensional
volume, respectively, of a set A ⊂ Rd. From [13] we have

vol(Vn) ≤ C(d)bn.
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(In [13] one can find explicit expression of a constant C(d).) Therefore

(bn)−1|∂lDn| ≤ C(d)
vol((∂Vn)2l

√
d)

vol(Vn)
.

One can show that the relation

vol((∂Vn)2l
√

d)
vol(Vn)

→ 0, as n →∞,

will follow if we prove that

m(ε) = sup
vol((∂V )ε)

vol(V )
→ 0, as ε → 0, (16)

where sup is taken over all convex bodies containing unit ball with a center
at 0. We have (for polytopes this inequality can be proved directly, general
case is proved by approximation of V by polytopes)

vol((∂V )ε) ≤ 2vol(V ε \ V )

and
V ε ⊂ V + εV = (1 + ε)V,

where sum of sets is in the sense of Minkovski. Therefore

vol(V ε\V ) = vol(V ε)−vol(V ) ≤ vol((1+ε)V )−vol(V ) = ((1+ε)d−1)vol(V ),

and we easily get (16), what finishes the proof of the proposition.
Since we intend to apply results of Theorem 2 and Corollary 3 to statis-

tics σ̂2
n, R̂n, and Xn which are expressed by sums over the sets D∗

n, we must
show that these sets under assumptions made for Dn satisfy conditions of
Theorem 2.

Proposition 7. If the sets Dn satisfy (A) and Λ is finite set then the sets
D∗

n satisfy (A), and bn ∼ b∗n, where b∗n = |D∗
n|.

Proof. First we prove that

r∗n := ρ(D∗
n) →∞. (17)

From Proposition 5 we have that rn = ρ(Dn) →∞. Let c ∈ Rd be such that
B(rn, c) ∩ Zd ⊂ Dn (existence of such c follows from the definition of inner
radius). Without loss of generality we can assume that n is sufficiently large

10



and such that rn ≥ m
√

d (we recall that m = |Λ|). Then for any i ∈ Λ we
have B(rn −m

√
d, c) ∩ Zd ⊂ Dn + i, therefore B(c, rn −m

√
d) ∩ Zd ⊂ D∗

n.
This means that r∗n ≥ rn −m

√
d and (17) follows. Now we prove that

b∗n/bn → 1. (18)

To this aim we show that Dn \D∗
n ⊂ ∂mDn. Let j ∈ Dn and j /∈ D∗

n. Then
there exists i ∈ Λ such that j /∈ Dn + i, or that j − i /∈ Dn. Therefore,
j ∈ ∂mDn, since cube j + B(m) contains a point j ∈ Dn and a point
j − i /∈ Dn. Thus we have

b∗n ≤ bn ≤ b∗n + |∂mDn|. (19)

Now we use (12) from Proposition 5 and we get

|∂mDn|
bn

→ 0 (20)

and (18) follows. The last relation to be proved is

|∂D∗
n|(b∗n)−1 → 0. (21)

From the definition of the set D∗
n we have

|∂D∗
n| ≤

∑
i∈Λ

|∂(Dn + i)| = (m + 1)|∂Dn|.

This inequality and (19) imply

|∂D∗
n|

b∗n
≤ m + 1

1− |∂mDn|b−1
n

|∂Dn|
bn

.

Taking into account (20) and condition (A) we get (21). The proposition is
proved.

The next result which we shall need is the CLT for stationary random
fields. It turns out that for our purposes the most appropriate is the fol-
lowing rather general theorem from [5]. In order to formulate this result we
introduce some notations from [5]. The lexicographic order on Zd is defined
as follows: if i, j ∈ Zd then i <lex j means that either i1 < j1 or for some
p ∈ {2, . . . , d}, ip < jp and im = jm for all 1 ≤ m < p. Let us define sets
V k

i , k ∈ N, i ∈ Zd, by the following relations

V 1
i = {j ∈ Zd : j <lex i},
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and for k ≥ 2
V k

i = V 1
i ∩ {j ∈ Zd : ||i− j||∞ ≥ k}.

Let ξ = {ξi, i ∈ Zd} be a real valued strictly stationary random field,
Eξ0 = 0, Eξ2

0 < ∞. For any Γ ⊂ Zd let FΓ = σ(ξj , j ∈ Γ) and

SΓ =
∑
i∈Γ

ξi.

We assume that Γn, n ≥ 1, is a sequence of finite subsets of Zd satisfying
the following conditions:

lim
n→∞

|Γn| = +∞ and lim
n→∞

|Γn|−1|∂Γn| = 0. (22)

Theorem 8. (Theorem 1 in [5]). Assume that sequence Γn, n ≥ 1, of finite
subsets of Zd satisfies the condition (22) and a random field introduced above
is ergodic and satisfies condition∑

k∈V 1
0

E|ξkE(ξ0|FV
||k||
0

)| < ∞. (23)

Then the series η =
∑

k∈Zd E(ξ0ξk) converges and random variable
|Γn|−1/2SΓn converges in distribution to N(0, η).

Remark 9. We formulated result from [5] under additional assumption of
ergodicity in order to avoid the notion of the so-called U-stable convergence,
which is needed in general case when η is random.

3 Proof of Theorem 1

Relation (7) will follow from the relation

(σ̂2
n, R̂n, b∗n

−1Xn , (b∗n)−1/2Wn) d−→ (σ2, R0,X0,W0) (24)

by continuous mapping theorem. In its turn the relation (24) will follow if
we prove

σ̂2
n

P−→ σ2, (25)

R̂n,
P−→ R0, (26)
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and relations (5) and (6) and then use the well-known result from [3], stating
that if Xn

d−→ X and Yn
P−→ a, then (Xn, Yn) d−→ (X, a). Although for

our main result it is sufficient to prove weak consistency of estimators in
relations (5), (25), and (26), here it is necessary to mention, that, under
little bit stronger conditions on sets Dn and using results from [10] or [7], it
is possible to prove strong consistency of these estimators. Let us note, that
X = (Xt, t ∈ Zd) is a stationary solution of (1), therefore it can be written
as a rather simple functional of ε = (εi, i ∈ Zd) with εi, i ∈ Zd, being
iid random variables. Thus, X is ergodic and we can apply Theorem 2 or
Corollary 3 with appropriately chosen function g. Since statistics σ̂2

n, R̂n, and
Xn are expressed by sums over the sets D∗

n we use Proposition 7, allowing
to apply results of Theorem 2 with sets D∗

n instead of Dn.
Having relations (25), (26), and (5), it remains to prove (6). For this aim

we shall show that Theorem 8 is applicable. As usual, to prove CLT in Rm

one can use reduction to one-dimensional CLT by Cramer-Wold device, that
is, one must prove that for any α ∈ Rm, α = (α1, . . . , αm), α2

1+· · ·+α2
m = 1

random variables ((b∗n)−1/2Wn, α) converge to univariate normal law. From
this relation it will follow

(b∗n)−1/2Wn
d−→ N(0, σ2R0).

Let us denote

Zk =
m∑

i=1

αiXk−ϕ−1(i)εk, k ∈ Zd.

We want to prove CLT for

Sn = (b∗n)−1/2
∑

k∈D∗
n

Zk

and for this aim we use Theorem 8 with a sequence of sets D∗
n as Γn and

random field Z = (Zk) as ξ. Conditions for D∗
n follow from Proposition 7.

Since random field Z is ergodic, σ-algebra of invariant sets Z−1(T ) is trivial,
η is non-random (and it is easy to check that η = E(

∑m
i=1 αiX−ϕ−1(i))2 is a

variance of the univariate limit normal law). Therefore it remains to show
that the main condition (23) of Theorem 8 is satisfied, namely, that the
relation ∑

k∈V 1
0

E|ZkE(Z0|FV
||k||
0

)| < ∞ (27)

holds. We remind that
Z0 =

∑
i∈Λ

αiX−iε0,

13



(here we used notation α = (αi, i ∈ Λ)). Let us denote F0 = σ(εi, i 6= 0).
It is easy to see that for any i ∈ Λ random variable X−i is measurable with
respect to F0, therefore E(Z0|F0) = 0. Now let us note that F

V
||k||
0

⊂ F0 for

any k ∈ V 1
0 , therefore

E
(
Z0|FV

||k||
0

)
= E

(
E(Z0|F0)|FV

||k||
0

)
= 0

and (27) trivially follows. This ends the proof of Theorem 1.
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