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Abstract. We investigate properties of a new estimator for a tail index introduced by Davydov
and co-workers. The main advantage of this estimator is the simplicity of the statistic used for the
estimator. We provide results of simulation by comparing plots of our’s and Hill’s estimators.
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1. Introduction and Formulation of Results

During past few decades, in many fields of applied probability, more and more
attention has been paid to heavy-tailed distributions and, as a consequence, the
problem of estimation of a tail index from various types of data has become rather
important. At present, there are several known estimators, all of them expressed as
some functionals of order statistics of a sample, the best known among them being
the one proposed by Hill in [15].

Let us consider a sample of size n taken from a heavy-tailed distribution func-
tion F , that is, we assume that X1, . . . , Xn are independent identically distributed
(i.i.d.) random variables with a distribution function F satisfying the following
relation for large x:

1 − F(x) = x−αL(x), (1)

where α > 0, and L is slowly varying:

lim
x→∞

L(tx)

L(x)
= 1.

Let Xn,1 � Xn,2 � · · · � Xn,n denote the order staistics of X1, . . . , Xn. The
following estimator to estimate the parameter γ = 1/α was proposed in [15]:

γ
(1)
n,k = 1

k

k−1∑
i=0

logXn,n−i − logXn,n−k,

where k is some number satisfying 1 � k � n. The problem of how to choose k is
rather complicated (see, for example, [4, 10, 11, 13, 14, 16]). During the 25 years
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2 V. PAULAUSKAS

after this estimator, which bears Hill’s name, was proposed there have been many
papers devoted to the problem of choosing k and some properties and modifications
of Hill’s estimator, see, for example, [2, 3, 8, 9, 19] and references therein. Here
are several other estimators of the parameter γ , based on order statistics:

γ
(2)
n,k = (log 2)−1 log

Xn,n−[k/4] −Xn,n−[k/2]
Xn,n−[k/2] − Xn,n−k

,

γ
(3)
n,k = γ

(1)
n,k + 1 − 1

2

(
1 − (γ

(1)
n,k )

2/Mn

)−1
,

γ
(4)
n,k = Mn

2γ (1)n,k

,

where

Mn = 1

k

k−1∑
i=0

(logXn,n−i − logXn,n−k)2.

The estimator γ (2)n,k was proposed by Pickands in [19], γ (3)n,k – in [9] and γ (4)n,k – by
C. G. de Vries [7]. We separated and presented these four estimators because in [7],
all these estimators are compared and it is shown that none of the estimators domi-
nates the others. It turned out that for different values of the parameters γ and ρ (the
parameters characterizing the so-called second-order asymptotic behavior of F ,
which will be introduced below) different estimators have the smallest asymptotic
mean-squared error. As was mentioned, all these estimators are based on order
statistics, therefore investigation of their asymptotic properties is not a simple task.
In [5] (see also [6]), we proposed a new estimator, based on a different idea (which,
in turn, was born through the consideration rather abstract objects – random com-
pact convex sets) and proved a simple result – the asymptotic normality of this
estimator.

Here we investigate in more detail this new estimator and one of the purposes
of the paper is to draw the attention of statisticians to this, since preliminary simu-
lation results are rather promising.

Let us assume that we have a sample X1, . . . , XN from distribution F , which
satisfies the second-order asymptotic relation (as x → ∞)

1 − F(x) = C1x
−α + C2x

−β + o(x−β), (2)

with some parameters 0 < α < β � ∞. The case β = ∞ corresponds to Pareto
distribution, β = 2α – to stable distribution with exponent 0 < α < 2. (In [7]
the second-order asymptotic relation is used in a different form with parameters
γ = 1/α and ρ, and there is a simple relation between (α, β) and (γ, ρ).)

We divide the sample into n groups V1, . . . , Vn, each group containing m ran-
dom variables, that is, we assume that N = n · m. (In practice, we choose m and
then n = [N/m], where [a] stands for the integer part of a number a > 0.) Let

M
(1)
ni = max{Xj : Xj ∈ Vi}
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and let M(2)
ni denote the second largest element in the same group Vi. Now let us

denote

κni = M
(2)
ni

M
(1)
ni

, Sn =
n∑
i=0

κni, Zn = n−1Sn.

Although in [5] random variables κni were defined and the result proved only for a
sample from multivariate stable law with 0 < α < 1, it is easy to see that the main
relation (6.1) from [5], used in the proof holds in the present setting and without
any restriction on α, therefore the same proof gives the following result. As usual,

a.s.−→ and
D−→ denote almost sure convergence and convergence in distribution,

respectively, and N(a, σ 2) stands for the normal random variable with mean a and
variance σ 2.

THEOREM A ([5]). LetX1, . . . , XN be a sample from a distribution satisfying (1)
and let n = m = [√N ]. Then

Zn
a.s.−→ α

α + 1
.

If F satisfies (2) with β = 2α, then

n
(
n−1Sn − α(1 + α)−1)( n∑

i=1

κ2
ni − n−1S2

n

)−1/2
D−→ N(0, 1) (3)

and

n1/2(n−1Sn − α(1 + α)−1) D−→ N(0, σ 2) (4)

with

σ 2 = σ (α)2 = α

(α + 1)2(α + 2)
.

It is easy to see that the quantity Sn(n − Sn)
−1 gives a consistent and asymp-

totically unbiased estimator for α and it is possible for this estimator to prove the
results, analogous to (3) and (4), namely

n(1 − Zn)
2(Sn(n− Sn)

−1 − α)( ∑n
i=1 κ

2
ni − n−1S2

n

)1/2

D−→N(0, 1) (5)

and

n1/2(Sn(n− Sn)
−1 − α)

D−→N(0, σ̃ 2), (6)

where σ̃ 2 = σ̃ (α)2 = α(α + 1)2(α + 2)−1. From any of relations (3)–(6), it is
possible to construct positive intervals for the unknown parameter α (in case of (4)
and (6) instead of σ (α)2 and σ̃ (α)2, one can use σ (α̂)2 and σ̃ (α̂)2, respectively).
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4 V. PAULAUSKAS

But it is difficult to expect a satisfactory result, since all these relations were ob-
tained under the assumption that n = m, which has no justification. Therefore,
now we shall work out how to choose n and m in a better way. We consider m as
an independent variable, then n = n(m) = [N/m], but for simplicity, we will use
the relation n = N/m. We always assume that n → ∞ and m → ∞, as N → ∞.
Only in the case of Pareto distribution will we see that it is better to take m = 2
(then we use all samples). This corresponds to the well-known fact that for Pareto
distribution in the Hill estimator γ (1)n,k , we take k = n. Let us denote

am = Eκn1 = α

1 + α
+ γm, p = α

1 + α
, p̂ = n−1Sn.

Using this notation, we can write
√
n(n−1Sn − α(1 + α)−1)

= √
n(p̂ − p) = 1√

n

n∑
i=1

(κni − Eκni)+ √
nγm. (7)

Now the idea is to choose n and m in such a way that the first term, which is a
sum of i.i.d. bounded random variables (but forming a triangular array), converges
in distribution to N(0, σ 2), where σ 2 = limn→∞ σ 2

n , σ
2
n = E(κn1 − Eκn1)

2. The
second term, which is biased for the estimator p̂, at least must stay bounded. The
first possibility is to achieve

√
nγm → 0, and in this way we have the following

result:

THEOREM. Let us suppose that F satisfies (2) with α < β � ∞. If we choose

n = εNN
2ζ/(1+2ζ ), m = ε−1

N N1/(1+2ζ ),

where εN → 0, as N → ∞ and ζ = (β − α)/α, then

√
n(p̂ − p)

D−→N→∞ N(0, σ 2), (8)

where σ 2 = limn→∞ σ 2
n = α((α + 1)2(α + 2))−1.

Another possibility is to keep the bias positive, but bounded. Using the estimate
from above for γm, we can choose n and m in such a way that, for the first term
in (7), the central limit theorem holds and

√
nγm � λ, (9)

with some positive λ. Then the mean-square error is

E
(
n−1Sn − α(1 + α)−1)2 = σ 2

n + nγ 2
m

n
� σ 2 + λ2

n
.
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A NEW ESTIMATOR FOR A TAIL INDEX 5

Since n depends on λ, we can choose λ in order to minimize this last expression.
We will show that λmin = σ (2ζ )−1/2 and the corresponding value of n, which we
believe is close to optimal, is given by formula

n = N2ζ/(1+2ζ )C
−2/(1+2ζ )
0 σ 4ζ/(1+2ζ )(1 + 2ζ )(2ζ )−2ζ/(1+2ζ ),

where C0 is a constant from the lemma below. Since we have only estimate (9), but
not the relation

√
nγm → λ, we can now only accertain that

√
n(p̂ − p) is close

to N(C(λmin), σ
2), where C(λmin) is some bias for which we know that 0 � C(λ)

< λ.
It is not easy to compare (in the manner of [7]) this new estimator with all

those listed at the beginning of the introduction, but we intend to do this in the
near future. The main difficulty is caused by the fact that we have no exact value,
but only an estimate for a limited bias. One more reason preventing us from com-
paring different estimators is the following. As was mentioned in [12], all these
results concerning optimal k in the case of the Hill estimator (similar situation
is for n in our case) depend on parameters α and β, which are unknown and
therefore it is impossible to use in practice. Moreover, all these results have an
asymptotic nature and there is no information available for moderate sample sizes.
Thus these results mainly have theoretical values and show what can be expected,
but for practical application, most probably the best way is to make some plot,
similar to that which is used in the case of the Hill estimator (see [12]) when
we plot the values {(k, γ (1)n,k ), 1 � k � n − 1}. Namely, we can calculate the
estimator p̂ = p̂m as a function of m, starting with small values of m. Then we
plot {(m, p̂m),m0 < m < M0} with some m0 > 2, M0 < N/2. We call such a plot
a usual plot, since we shall now speak of another type of plot. In [12] it is recom-
mended together with the Hill plot to use another plot (called the alternate Hill plot,
when one plots {(θ, γ (1)

n,[nθ ]), 0 < θ < 1}), since in some situations, one plot is more
informative, while in another one is more informative. We made such alternate
plots for our estimator too (that is, we plotted values {(θ, p̂[Nθ ]), 0 < θ < 1}
and we call such a plot an alternative plot) and it seems that both plots are rather
informative. From this small simulation study (we generated samples only from
symmetric stable and Pareto distributions with several values of α), it is difficult
to give preference to one or another type of plot, maybe countrarily, both plots,
suggesting the same value of the parameter under the estimation makes in practi-
tioner more confident. At this point, it is appropriate to mention that using statistical
package S-PLUS is rather simple when making these plots and to save computer
time (using a 166 Mhz Pentium processor) for moderate samples (up to N = 103)
were seconds for one plot.

We generated a large number N of values of symmetrically stable or Pareto
random variables with parameter α (the Pareto distribution function is defined as
F(x) = 1 − x−α, x � 1) and applied the estimator p̂ to estimate the value of
p = α/(1 + α). Only a small part of the simulation results are presented in three
figures (in the preprint [18] there were six figures). In Figure 1 are the results for
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6 V. PAULAUSKAS

Figure 1. Stable distribution with α = 0.5. The left column – usual plots, the right –
alternative. Horizontal line – true value of p.

a symmetric stable random variable with α = 0.5. In the left column there are
that usual plots, while on the right there are alternative plots for the same values
of N and α. In all the plots, the horizontal line corresponds to the true value of
the parameter p. Since, for all stable random variables β = 2α, ζ = 1, and the
asymptotically optimal value of m is approximately N1/3 or in the alternative plot
θ = 1/3. For a very large sample size (N = 105, α = 1.5) both plots are very good
and there is a large range for the size of groups m and θ where the graph remains
a true value of the parameter p = α/(1 + α) = 0.6. For moderate values of N ,
ranging from 125 to 1500, it seems that the usual plots are less volatile but, as was
noted by the referee, this conclusion is not true, since in the usual plot we do not
show the behavior of the plot for large values of group size, while in the alternative
plot we take all the values of θ, 0 < θ < 1. Also, it seems that the optimal value
of θ is shifted to the right and is around 0.4, but this can be explained, since for
smaller values of N , the role of constants is more substantial.

The situation is even better in the case of Pareto distribution (see Figure 2) with
the same value of parameter α = 0.5 as in Figure 1. For this distribution β = ∞,
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A NEW ESTIMATOR FOR A TAIL INDEX 7

Figure 2. Pareto distribution with α = 0.5. The left column – usual plots, the right –
alternative. Horizontal line – true value of p.

therefore ζ = ∞, and the best value of m is the smallest possible value, that is, 2.
Even for small sample sizes N (ranging from 26 to 500) both plots – usual and
alternative – for small values of m and θ give very good coincidence with true
value p. Also we made simulations taking Pareto variables with bigger values of α
(equal to 4 and 8), and the plots were better, reflecting the fact that the variance of
the limit law for the estimator is decreasing with α increasing (see (8)). It is not
difficult to verify that

E

(
min(X, Y )

max(X, Y )

)
,
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8 V. PAULAUSKAS

Figure 3. Stable distribution with α = 0.5. The left column – estimation of parameter p, the
right – Hill’s plot of the parameter γ . Horizontal line – true value of parameters.

where X,Y are two independent Pareto random variables with exponent α, is ex-
actly p = α(1 + α)−1, therefore our estimator p̂ is nothing but the sample mean
for a bounded random variable.

Figure 3 compares our estimator p̂ with Hill’s estimator γ (1)n,k . We took the same
samples of stable (in [18] there is also a comparison with Pareto distribution) with
α = 0.5, used in Figure 1, thus the left column of Figure 3 is simply the repeated
left column of Figure 1. On the right column, there are Hill plots of the estimator
γ
(1)
n,k , which estimates parameter γ = 1/α, so in these graphs, the horizontal line is

at γ = 1/0.5 = 2.
All these figures suggest that our new estimator’s performance is quite good,

and it can be explained (good performance in the Pareto case as we just explained)
that despite the fact that it uses not all the largest values from the sample, it has
a very simple form – it is a sum of i.i.d. bounded random variables. Therefore, it
seems that it is possible to recommend that practitioners try this new estimator on
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A NEW ESTIMATOR FOR A TAIL INDEX 9

real data. At the same time, it is necessary to note that some problems remains to
be investigated. While this estimator is robust to scale transformation (the value
of p̂ remains unchanged if we multiply all samples by some positive constant), it
is sensitive to a shift. Also, it remains an open question just how this estimator
behaves when we drop the assumption of independence in the sample. One more
direction of investigation is to use time which the plot spends in the vicinity of
the horizontal line, corresponding to the true value of the parameter under con-
sideration. This idea was discussed during the conference in the talk by H. Drees.
Preliminary simulations show that plots of our new estimator are well suited to
exploit this idea. We intend to investigate these questions in near future.

2. Proof of the Theorem

As was explained before in the formulation of the theorem, in order to prove (8),
we need to show that

1√
n

n∑
i=1

(κni − Eκni) → N(0, σ 2) (10)

and
√
nγm → 0.

Since (10) easily follows (see [5]), the main step in the proof is to estimate γm. If
we denote G(x) = 1 − F(x), then κn1 has the same distribution as

G−1

(
'2

'm+1

)(
G−1

(
'1

'm+1

))−1

,

where G−1 is the inverse function for G and 'i = ∑i
j=1 λi with λi, i � 1, being

i.i.d. standard exponential random variables. Therefore

γm = E

(
G−1

(
'2

'm+1

)(
G−1

(
'2

'm+1

))−1)
− α

1 + α
.

LEMMA. Suppose that F satisfies (2) with α < β � ∞. Then

|γm| � C0m
−ζ , (11)

where C0 is a constant depending on C1, C2, α, and β.
Proof. We have that, for large values of x,

G(x) = C1x
−α + C2x

−β + o(x−β),

therefore it is possible to show that for the inverse function for small values of t ,
we have the following relation:

G−1(t) = at−1/α + bt−1/α+(β−α)α−1 + O
(
t−1/α+2(β−α)α−1)

(12)
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10 V. PAULAUSKAS

with a = C
1/α
1 , b = α−1C2C

(1−β)α−1

1 . From (12) it follows that for small δ > 0
and 0 < t < δ,

G−1(t)t1/αC
−1/α
1 = 1 + C

−1/α
1 btζ

(
1 + O(tζ )

)
.

Therefore, if we take δ such that |O(tζ )| � 1/2 (this gives us δ = o(2−1/ζ )), then
we can write

1 + C4t
ζ � G−1(t)t1/αC

−1/α
1 � 1 + C3t

ζ (13)

with C3 = (3/(2α))C2C
−β/α
1 , C4 = 1

3C3.

As in [5], we use the relation

E

(
λ1

λ1 + λ2

)1/α

= α

α + 1
.

Let

Rm+1
+ = {x̄ = (x1, . . . , xm+1) : xi � 0, i = 1, . . . , m+ 1},

+m = x1 + · · · + xm;
[A2,m = {x̄ ∈ Rm+1

+ : (x1 + x2)/+m+1 � δ}, Ac
2,m = Rm+1

+ \A2,m,

where δ is such that (13) holds. Then

|γm| =
∣∣∣∣E

(
G−1

(
'2

'm+1

)(
G−1

(
'1

'm+1

))−1)
− α

α + 1

∣∣∣∣ � I1 + I2 + I3,

(14)

where

I1 =
∫
A2,m

∣∣∣∣G−1

(
x1 + x2

+m+1

)(
G−1

(
x1

+m+1

))−1

e−+m+1dx̄

∣∣∣∣,

I2 =
∫ c

A2,m

∣∣∣∣G−1

(
x1 + x2

+m+1

)(
G−1

(
x1

+m+1

))−1

−
(

x1

x1 + x2

)1/α∣∣∣∣e−+m+1dx̄,

and

I3 =
∫
A2,m

(
x1

x1 + x2

)1/α

e−+m+1dx̄.

Since the integrands in both integrals I1 and I3 are positive and less than 1, we
easily get for any τ > 0 (which will be chosen later)

I1 + I3 � 2P

{
λ1 + λ2

λ1 + · · · + λm+1
> δ

}
� 2δ−τE

(
'2

'm+1

)τ

. (15)
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A NEW ESTIMATOR FOR A TAIL INDEX 11

If we denote

t1 = x1

+m+1
, t2 = x1 + x2

+m+1
, U = G−1(t2)

G−1(t1)
, A =

(
t1

t2

)1/α

,

then we have t1 < t2 < δ in Ac
2,m, therefore, applying (13), we can write

AB1 � U � AB2,

where

B1 = 1 + C4t
ζ

2

1 + C3t
ζ

1

, B2 = 1 + C3t
ζ

2

1 + C4t
ζ

1

.

Then

|U − A| � Amax((B2 − 1), |B1 − 1|). (16)

Taking into account that C3 = 3C4 and applying rough estimates, we get

max((B2 − 1), |B1 − 1|) � 4C4t
ζ

2 . (17)

From (16) and (17) we have

I2 =
∫
Ac2,m

|U − A| exp(−+m+1) dx̄

� 4C4

∫
Ac2,m

At
ζ

2 exp(−+m+1) dx̄ � 4C4E

(
'2

'm+1

)ζ

. (18)

It remains to evaluate E('2/'m+1)
ζ . It is known (see, for example, [1]) that

m-dimensional random vector ('1/'m+1, . . . , 'm/'m+1) has the density

f (x1, x2, . . . , xn) =
{
n!, if 0 � x1 � x2 � · · · � xn � 1,
0, elsewhere.

Then it is not difficult to find that '2/'m+1 has the density (we assume that m � 2)

g(x) =
{
m(m− 1)x(1 − x)m−2, if 0 � x � 1,
0, elsewhere.

Therefore

E

(
'2

'm+1

)ζ

= m(m− 1)
∫ 1

0
x1+ζ (1 − x)m−2 dx

= m(m− 1)B(m− 1, ζ + 2), (19)

where B(µ, ν) = ∫ 1
0 x

ν−1(1−x)µ−1 dx is the so-called Beta-function. From tables
(see, for example, [17]) one can get the following relation between this function
and well-known Gamma-function:

B(x, y) = '(x)'(y)

'(x + y)
.
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12 V. PAULAUSKAS

Performing simple calculations, we have

B(m− 1, ζ + 2) � 4'(ζ + 2)m−(2+ζ ),

therefore

E

(
'2

'm+1

)ζ

� 4'(ζ + 2)m−ζ . (20)

Collecting estimates (14), (15), (18)–(20) and choosing τ = ζ in (15), we get the
estimate (11) withC0 = C0(α, β,C1, C2) (it is possible to write down this constant,
but since we are not interested in exact values of constants, we will not do this).
The lemma is proved. ✷

Having the estimate for γm, we choose a sequence εN → 0, as N → 0, and
taking

n = ε
2/(1+2ζ )
N C

−2/(1+2ζ )
0 N2ζ/(1+2ζ ),

m = ε
−2/(1+2ζ )
N C

2/(1+2ζ )
0 N1/(1+2ζ ), (21)

we get
√
nγm → 0. Therefore, taking into account (6), we get (8) and the theorem

is proved. ✷
If for some λ > 0, we chose n and m from the relation

C0
√
nm−ζ = λ,

namely, if n and m are given by (21) only with λ instead of εN, then, as was
explained after the formulation of the theorem, the mean square error E((1/n)Sn−
(α/(1+α)))2 is approximately equal to 1/n(λ2+σ 2). Since n depends on λ, we can
choose λ in order to minimize this expression. It is easy to see that this minimizing
value is λmin = σ/

√
2ζ and the corresponding value of n is given by the following

formula:

nopt = σ 4/(1+2ζ )C̃
−2/(1+2ζ )
0 N2ζ/(1+2ζ ),

where C̃0 = C0(2ζ )ζ (1 + 2ζ )−(1+2ζ )/2.
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