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Abstract

A wide selection of standard statistical pattern classification algorithms can be applied as trainable fusion rules while designing neural network
ensembles. A focus of the present two-part paper is finite sample effects: the complexity of base classifiers and fusion rules; the type of outputs
provided by experts to the fusion rule; non-linearity of the fusion rule; degradation of experts and the fusion rule due to the lack of information
in the design set; the adaptation of base classifiers to training set size, etc. In the first part of this paper, we consider arguments for utilizing
continuous outputs of base classifiers versus categorical outputs and conclude: if one succeeds in having a small number of expert networks
working perfectly in different parts of the input feature space, then crisp outputs may be preferable over continuous outputs. Afterwards, we
oppose fixed fusion rules versus trainable ones and demonstrate situations where weighted average fusion can outperform simple average fusion.
We present a review of statistical classification rules, paying special attention to these linear and non-linear rules, which are employed rarely but,
according to our opinion, could be useful in neural network ensembles. We consider ideal and sample-based oracle decision rules and illustrate
characteristic features of diverse fusion rules by considering an artificial two-dimensional (2D) example where the base classifiers perform well
in different regions of input feature space.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, the theory of combination of ensembles of
neural networks, cooperative neural-networks, multiple classi-
fier systems (MCS) and related methods has been developed
within many diverse research communities, including neural
networks, machine learning, pattern recognition, and statistics
(Kittler & Roli, 2000). In this paradigm, a number of simpler
neural networks (classification algorithms) are designed at first.
A “boss” decision rule aggregates outputs of the first-level de-
cisions (base classifiers) and makes a final classification. I use
the term “boss” (governor) in memory of Professor Leonard
Rastrigin, who initiated the research direction “a collective of
decision rules in pattern recognition” (Rastrigin & Erenstein,
1973, 1981). He used this term to name the fusion (combining)
rule.

The neural network ensembles and multiple classifier
systems (MCS) suggest an approach to design classification
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and prediction rules with a possibility of splitting the design
process into separate parts. For different data sets, diverse
subsets of features or types of algorithms, various computers
could be used. Different designers’ teams could make their
independent contributions. At times, MCS convey decision
making processes that are easier to interpret. Accordingly, MCS
are helpful mathematical models while investigating collective
decision making in human collectives. In addition, MCS, now
and again, improve sample size/complexity relations. It is
important if the sample size that is available for designing the
classification rule is not large.

The first attempts to use MCS in order to organize the
decision-making process in two stages began four decades
ago (see e.g. Nilsson (1965, chap. 6), Rastrigin and Erenstein
(1973), Telksnys (1968) and, for a forecasting task, a review by
Clemen (1989)). The number of publications for the decision-
making algorithm combination problem is approaching 1000.
Useful reviews of different fusion rules can be found
in Diettrich (2000), Gosh (2002), Hashem (1997), Haykin
(1999), Kittler (1998), Kittler, Hatef, Duin, and Matas (1998),
Kuncheva, Bezdek, and Duin (2001), Kuncheva (2004), Xu,
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Krzyzak, and Suen (1992) and a series of proceedings (Kittler
& Roli, 2000, 2001, 2002, 2003, 2004). An impressive, almost
encyclopaedic recent survey is Rahman and Fairhurst (2003),
where almost 350 literature sources are reviewed.

Rahman and Fairhurst (2003) categorize MCS according
to inherent design approach. They set apart: analytical
methods, pseudo-analytical methods, empirical methods, neural
network based methods, and support methods supporting
decision combination from multiple independent sources.
According to topologic information exchange pathways,
they distinguish vertical, horizontal and hybrid combination
schemes. According to the type of outputs provided by the
base classifiers, they and Ho (2001) make a distinction between
crisp, rank and confidence value (continuous) outputs. These
information management issues are vital in classifying various
multiple expert decision combination approaches.

One of the principal characteristics of any pattern
recognition (PR) system is generalization error. Generalization
error of the PR system depends on the complexity of the
decision-making rule, the training set size, and a priori
information incorporated into the algorithm. The MCS allow
an organized complex two-stage decision-making process.
Similarly to feature extraction, MCS simplify the decision-
making process and allow us to introduce additional non-
formalized information (Raudys, 2002). Therefore, the time
came to look at MCS design from the generalization error
point of view, and to elucidate complexity, prior assumptions
and sample size relationships. Alas, except for the monograph
of Kuncheva (2004), no broad systematic analysis of this sort
has been performed in the literature. A useful mathematical
technique for investigating the relationships mentioned is
multivariate statistical analysis.

The size of data set available for designing the pattern
recognition system is a main factor considered in this paper. For
this reason, the complexity of the decision-making algorithm
becomes a crucial factor. So we have split the paper into two
parts. In the first part, we consider the complexity of algorithms
and their characteristic features, assuming that sample size is
large. We analyse arguments for utilizing continuous outputs of
base classifiers versus categorical outputs at first (Section 2). In
Section 3, we compare fixed fusion rules versus trainable rules,
and present a review of trainable rules. We pay special attention
to these linear and non-linear rules, which are employed rarely
but, according to our opinion, could be useful in MCS design. In
Section 4, we consider ideal and sample-based oracle decision
rules. Section 5 illustrates characteristic features of diverse
fusion rules by examining artificial an two-dimensional (2D)
example where base classifiers perform well in different regions
of input feature space. In the second part of the paper, small
sample effects are analysed. Part of these effects arises only in
two-stage decision-making algorithms.

Before starting, necessary mathematical formalism is
introduced. We consider K categories (pattern classes) and L
base experts. The outputs provided by the j th expert we denote
by o j1, . . . , o j K . To make the final allocation of p-dimensional
input vector x = (x1, x2, . . . , x p)

T to one of the categories,
the fusion rule utilizes the DMCS = L × K -dimensional
vector o = (o11, o12, . . . , o1K , o21, o22, . . . , oL K )T. In some
algorithms, the outputs of the base classifiers are normalized
to satisfy the condition

∑K
i=1 o j i = 1. Then dimensionality

is DMCS = L × (K − 1). Most often, we will concentrate
on the two-category case (K = 2). If K = 2, the experts
produce L components, o1, o2, . . . , oL , whether crisp (0 or 1)
or continuous.

If one knows the distribution densities of the input vectors
exactly, one may design an optimal classifier with minimal,
Bayes error, PB. If one uses some simplified statistical model
(say A) of input data, one obtains a classifier with asymptotic
error, PA

∞ ≥ PB. Asymptotic classification error, PA
∞, is a

hypothetical notion obtained under an assumption that training
set sizes are infinitely large. If training data is used to design
classifier A, its classification error, PA

n , is conditioned to a
given training set of N1 and N2 samples. This is conditional
generalization error. Mean generalization error, E PA

n , is an
expectation of PA

n , taken over all possible training sets of N1
samples from the first class and N2 samples from the second
one. The training set based estimate of the classification error
is called an apparent error rate, PA

app. Usually, PA
app < PA

n and
PA

app < E PA
n . For that reason, the experts’ outputs calculated

for the training set data are optimistically biased.

2. Continuous versus crisp outputs of the expert classifiers

An elucidation of factors that affect the choice between
crisp or continuous outputs will be performed by means of
the examination of 2D complex-shaped artificial two-category
data. To generate the data, 2D Gaussian vectors were split
into two pattern classes with narrow area between them. The
classes can be separated by a palm-shaped decision boundary
(see Fig. 1(a)). In principle, such a boundary can be realized by
a multilayer perceptron (MLP) with nine hidden units. If the
number of hidden units is small (nine to eleven), it is not easy
to have faultless classification due to local minima problems.

Fig. 1(a) provides an example where the designer has two
expert networks that perform well in diverse parts of the feature
space separated by line x1 = 0.48. Each decision boundary
corresponds to a one-hidden-layer perceptron with h = 7
hidden units. The perceptron was trained, using subsets of
vectors from diverse regions of the feature space. For such base
classifier selection, an ideal “oracle” performs almost faultless
classification. Recall that, if at least one of the classifiers
produces the correct class label in a certain region of feature
space, then the oracle produces the correct class label too.

Denote by o j = f (y j ), ( j = 1, . . . , L) the outputs of the
MLP-based expert classifiers, where y j =

∑h
i=1 w j i zsi + w j0

are weighted sums of outputs of the hidden layer neurons
(s = 1, . . . , h) and f (y) is the non-linear activation function. In
Fig. 2(a), we present a scatter diagram of the distribution of the
weighted sums, y1 and y2. In the feature y1 and y2 space, both
categories can be classified almost without errors by means of
a piecewise linear fusion rule composed of two perpendicular
lines. If we use crisp outputs (0 and 1) of the expert networks,
a good decision boundary can be obtained by a weighted sum
rule that makes decisions according to the sign of a simple sum,
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Fig. 1. 2000 2D training points and decision boundaries of two MLP-based base classifiers: (a) experts are perfect for distinct parts of feature space; (b) non-ideal
experts.
Fig. 2. The distributions of the weighted sums, y1, y2: (a) “perfect” experts; (b) non-ideal experts. Decision boundaries: 1—of the SLP used as a fusion rule; 2—the
KDA classifier.
g(y1, y2) = y1 + y2 − 0.5. This example gives a strong reason
that, in the case of perfect experts in separate areas of the feature
space, the utilization of crisp outputs could appear useful. In
Part II of this paper, we will dispute that a large number of
base classifiers and small sample size could disagree with the
utilization of crisp outputs.

In the second example (Fig. 1(b)), we have decision
boundaries of two imperfect base classifiers (MLP seven hidden
units). 1000 vectors of each category were used to train the
MLP classifier. In Fig. 2(b), we present a scatter diagram
of 2D vectors, y1, y2. In order to obtain good separation in
feature y1 and y2 space, we have to create a complex non-linear
decision boundary. In Fig. 2(b), we depict such a boundary,
which was realized by means of Kernel Discirminant Analysis
(KDA; see e.g. Duda, Hart, and Stork (2000), Fukunaga (1990),
or Section 3.2 of this paper). Linear separation realized by
single layer perceptron (SLP) results gave worse discrimination
of the pattern classes.

Complexity of the decision boundary in the features y1 and
y2 space emphasizes that, in the present example, obtaining
the optimal fusion rule is almost as difficult as in the original
feature x1 and x2 space. Thus, one can deduce that:

If we have experts, good in separate parts of the feature
space, then we may use crisp outputs. In such situations, the
task of the boss (the fusion rule designer) is rather simple.
If we have weak experts, continuous outputs have to be
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used. Then all the difficulty of the classification problem is
transferred to the boss (fusion rule).

The intermediate case between continuous and crisp outputs
arises if one utilizes non-linearly transformed variables,
e.g. o1 = f (y1) = 1/(1 + exp(−y1)), o2 = f (y2) =

1/(1 + exp(−y2)). As a generalization of this situation, one
can consider generalized outputs

o j = 1/(1 + exp(−γ y j )), (1)

which are distinguished by different positive γ . For very small
γ , one has almost linear transformation of the variables y1
and y2. In such a case, final classification is performed in
continuous feature space. For very large γ , one obtains crisp
outputs. As a result, coefficient γ controls linearity of the expert
output transformation. Therefore, coefficient γ influences the
complexity of the fusion rule and affects its generalization error.

3. Fixed and trainable fusion rules

3.1. Linear rules

An attractive feature of MCS is the possibility of using
fixed non-trainable fusion rules: sum, product rules, etc. Such
rules are based on quite strong assumptions about the similar
performance of all expert classifiers, and on the independence
of the base classifiers (Fumera & Roli, 2005; Kittler, 1998;
Kuncheva, 2004). The simple average (fixed sum) and the
product rules have common roots, since the sum rule is a
variation of the product (average) rule if logarithms of the
experts’ outputs were considered. In the two-category case, the
“best expert” rule and the majority voting rule could also be
considered as the simple average (hereafter, SA) rules. Simple
average rules give the best results in many applications. In
situations where experts’ outputs are statistically dependent,
qualifications of experts are different and sample size is large,
trainable linear rules like weighted average (WA) or weighted
voting could become preferable. The weighted average is a
generalization of the simple average rule. In the two-category
case, allocation of the vector to be classified is performed
according to the sign of a discriminant function (DF):

g(o) = wTo + w0 (2)

where w = (w1, w1, . . . , wL) is an L-dimensional weight
vector.

In the majority of known fusion rules, the weights are
positive (see e.g. Ramachandran, Farrell, & Mammone, 2002).
Standard statistical classifiers, however, could result in positive
and negative weights.

Euclidean distance (nearest means) classifier (EDC). This is
one of the simplest statistical allocation rules. A membership
of vector o is determined according to the distance to sample
estimates of mean vectors of the first and second class, ō(1) and
ō(2). Classification is performed according to the sign of DF (2).
In EDC, w = ō(1)

− ō(2) and w0 = −1/2(ō(1)
+ ō(2))Tw. In the

decision templates method, to fuse base classifiers (Kuncheva
et al., 2001), standard output patterns (templates) were found
for each pattern class. The unknown pattern vector is classified
according to its similarity to a particular template. Decision
making is very similar to that performed by the Euclidean
distance classifier.
Fisher linear discriminant function. This rule is used if
expert outputs are statistically dependent. Its weight vector is
wF = S−1

o (ō(1)
− ō(2)) and its bias term is w0 = −1/2(ō(1)

+

ō(2))TwF, where So is a sample estimate of the L×L covariance
matrix 6o = ((σi j )) supposed to be common for both pattern
classes (Duda et al., 2000; Fukunaga, 1990). If the expert
outputs are correlated, some of the components of vector wF
could become negative. We will show that the introduction of
negative weights can reduce the generalization error of MCS
dramatically.

Consider the case where the expert output vectors o are
distributed according to the multivariate Gaussian law, both
pattern classes share common covariance matrix 6o = ((σi j )),
and q2 = q1 = 1/2. For this data model, it is possible
to formulate an elegant theory for the simple average and
weighted average rules. In the Gaussian data case, standard
statistical theory gives asymptotic classification error of the
Fisher linear DF used as the WA rule:

PWA
∞ = Φ{−1/2δ}, (3)

where Φ{a} =
∫ a
−∞

(2π)−1/2σ−1 exp{−t2/(2σ 2)}dt is the
cumulative distribution function of the Gaussian N(0, 1)
random variable, δ2

= (δ(1), . . . , δ(D))6−1
o (δ(1), . . . , δ(D))T

is the squared Mahalanobis distance, and δ( j) is the distance
between expected values of outputs of the first class and the
second class, corresponding to the j th base classifier.

The weight vector of SA and majority voting combining
rules is w = [1 1, . . . , 1]

T. The final allocation of the vector
o is performed according to the sum gSA(o) =

∑L
j=1 o j . After

calculating the mean and variance of gSA(o), similarly to Eq.
(3), we have

PSA
∞ = Φ

−1/2
L∑

j=1

δ( j)

/√√√√ L∑
i=1

L∑
j=1

σi j

 . (4)

If vector (δ(1)δ(2), . . . , δ(D)) and matrix 6o are known, one
can calculate the classification errors of SA and WA (Fisher
classifier) fusion rules and compare them numerically. Visibly,
the optimal weighted sum should outperform the non-optimal
simple sum rule if the parameters of the weighting rule are
determined exactly.
A toy example. Consider MCS with two experts that give
continuous, highly correlated (ρ = 0.999) Gaussian outputs
with unit variances and mean values in the first and second
classes, 0.25, −0.25 (Expert 1) and 0.125, −0.125 (Expert 2).
Then δ(1)

= 0.5, δ(2)
= 0.25 and PExpert 1

∞ = Φ{−0.25} = 0.4,
PExpert 2

∞ = 0.45. Calculation according to Eqs. (3) and (4)
gives: PSA

∞ = 0.425 and PWA
∞ = 0.0025. We see that the

weighted average outperforms the fixed sum rule by 170 times
in this example.
Example with more realistic correlations. In data model
(W65), we have five equally good experts, i.e. each expert
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makes 8% error (δ(1)
= δ(2)

= · · · = δ(5)
= 2.81). The

correlations between the experts’ outputs and the components
of the WA fusion rule are:

6 =


1.0000 0.7247 0.5889 0.3928 0.7103
0.7247 1.0000 0.3351 0.5703 0.4501
0.5889 0.3351 1.0000 0.6707 0.3954
0.3928 0.5703 0.6707 1.0000 0.5748
0.7103 0.4501 0.3954 0.5748 1.0000

 (5)

wF
=

[
−36.60 26.54 25.21 −28.10 23.05

]T
. (6)

This specific pattern of the correlation matrix makes the
fusion weights remarkably different to the weights of the fixed
sum rule. Two weights are negative. Eqs. (3) and (4) give:
PSA

∞ = 0.039 and PWA
∞ = 0.0039 (ten times smaller!).

Regularized discriminant analysis (RDA). In small-sample-
size and high-dimensionality cases, certain simplifications of
covariance matrix estimates have to be applied. Most popular
is an intermediate case between EDC and Fisher DF. Here,
one adds a positive constant, λ (regularization parameter), to
all diagonal elements of sample covariance matrix So: SRDA =

So + λI, where I is the p × p identity matrix. In the RDA,
we reduce sample estimates of the correlations artificially. The
RDA technique and the weight decay term traditionally utilized
in perceptron training are of the same origin: both of them
perform regularization of the sample covariance matrix. In each
concrete application, the optimal λ value depends on sample
size and has to be selected by a trial-and-error method.

More linear statistical classifiers could be utilized as trainable
fusion rules. We mention here only a few of them. While
designing a minimum empirical error classifier, one does
not need to assume that the expert’s output vector, o, follows
a multivariate Gaussian law. A criterion to be minimized
is the number of training vectors that are misclassified
(Raudys, 2001b; see also Ueda (2000)). An important group of
classification rules is the maximal margin classifiers, currently
called support vector machines (Vapnik, 1995).

In the two-category case, the single-layer perceptron can
also be used to build the fusion rule. When certain conditions
are satisfied, after the first training iteration one obtains the
EDC. With an increase in the number of iterations, one moves
towards more complex decision rules: RDA, standard Fisher
rule, robust linear classifier, minimum empirical error, and
support vector classifiers (Raudys, 1998, 2001b). The number
of possible classifiers could be increased and the convergence
time could be reduced if, prior to training the perceptron,
one performs data a whitening linear transformation (Raudys,
2001b, chap. 5). Linear classifiers can also be used to combine
crisp binary outputs of base experts.

3.2. Non-linear rules

In continuous expert output space, nonlinear decision
boundaries could be realized by linear classifiers (EDC,
Fisher DF, SPL and their modifications) if the decision
were performed in new artificially generated non-linear space.
Polynomial features, radial basic function (RBF) features,
etc. are popular. To obtain a non-linear decision boundary, a
quadratic discriminant function (Duda et al., 2000; Friedman,
1989; Fukunaga, 1990) could also be applied. Provided that
the expert outputs are transformed into binary (0, 1) feature
space, non-linear decision boundaries could be designed for
crisp outputs too. Popular techniques for designing non-linear
trainable fusion rules are multilayer perceptron and radial basic
function networks (Haykin, 1999).

The k-nearest neighbors (k-NN) rule. In Fig. 2(b) we were
obliged to use a complex-shaped non-linear decision boundary
in order to obtain good separation of pattern classes. Popular
methods for designing non-linear local statistical classifiers
include the k-nearest neighbors rule and Kernel Discriminant
Analysis, often called Parzen window classifiers. In both
approaches, we have to store all training vectors. In the k-
NN rule, for each vector o to be classified, one calculates the
distances (similarity measures) to all training pattern vectors
and seeks k nearest neighbors. Vector o is classified according
to the majority of class labels in a subset of k distances.
Modifications of this rule differ in the definitions of the
distance. Two examples: Euclidean distance between or and
o(s)

l , DE(or , o(s)
l ) = (or − o(s)

l )T(or − o(s)
l ); Mahalanobis

distance DM(or , o(s)
l ) = (or − o(s)

l )TA(or − o(s)
l ), where

matrix A is usually an inverse of sample covariance matrix
So. Sometimes, instead of A, one uses the inverse of the
diagonal matrix composed only of variances. Utilization of the
Mahalanobis distance is recommended if components of the
vector o have different variances, are highly correlated, and the
sample size used to obtain the estimate So is sufficiently large.
When designing non-parametric fusion rules in discrete space,
one can use such distances as the number of disagreements
between or and o(s)

l (Hamming distance). While applying the
k-NN classifier for the fusion rule design, one ought to keep
in mind that, for categorical valued vectors, it is frequently
impossible to obtain exactly k nearest neighbors.

Kernel discriminant analysis (KDA). To get the decision rule,
one uses non-parametric estimates of the conditional densities
of each pattern class, and relies on the theory of statistical
decision functions. Let qs be the prior probability of class Πs
and Ns be the number of training vectors from Πs . Then the
conditional probability density estimate is

p̂s(o) =
1

Ns

Ns∑
l=1

κ{D(o, o(s)
l )/λ2

}, (s = 1, 2, . . . , K ), (7)

where λ is a smoothing constant that should be selected in
accordance with the training set size and data configuration,
and κ(D) is a decreasing function of D. We used κ(D) =

const × exp(−D).
A theory of statistical decision functions gives the following

classification rule: vector o is classified according to the
maximum of the products q1 p̂1(o), q2 p̂2(o), . . . , qK p̂K (o).
This rule can be used both for continuous and categorical
outputs of the expert classifiers. In applications, the values of
smoothing parameters of the k-NN and KDA classifiers, k and
λ, are very important. If k = 1 or λ → 0, we have no
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Fig. 3. (a) Decision boundaries (1, 2, 3) of three MLP classifiers (we present binary codes of the base experts’ outputs inside ellipses). (b) Competence areas for
three expert classifiers (1—non-marked, 2—circle marked and 3—rhombus marked).
smoothing. With an increase in k or λ, smoothing increases.
Optimal values of k or λ depend on the training set size, the
complexity of the data, and the complexity of the decision
boundary required to obtain good classification. Usually, we use
sizeable k and smaller λ in larger sample situations.

In order to find the optimal value, λopt, for a particular prob-
lem, we recommend evaluating the classifiers’ performance for
several values of λ and choosing the value that provides the best
performance. When the variances of all p features differ signif-
icantly and one uses the same λ value for all features, then it
is often necessary to normalize the features prior to using the
classifier. In such a case, λopt often falls in the interval (0.01,
10). In most practical problems, the valley of the dependence
of generalization error on parameter λ is rather flat. Thus, a set
of ten values, 0.001, 0.01, 0.03, 0.1, 0.3 1, 3, 10, 100, 1000, is
often sufficient to determine λopt empirically.

Evaluation of the classification errors for ten different values
of λ can be computationally demanding. In high-dimensional
problems, most of the computation time is spent in calculating
distances D(o, o(s)

l )/λ2 between vector o and the lth training
vector of the sth class. To conserve computer time, we
recommend that all ten error rates be estimated simultaneously.
After finding distance D(o, o(s)

l ), we calculate the ten terms

D(o, o(s)
l )/λ2

r r = 1, . . . , 10 corresponding to each value of
λr and classify the vector o for values of λr . The computer
time required to obtain ten simulation estimates of error rates
is considerably smaller that the time for ten independently
obtained estimates (Raudys, 1991; Raudys & Jain, 1991).

Behaviour-knowledge space (BKS) method. This is a popular
non-linear classifier combination method (Huang & Suen,
1995) designed for work with crisp outputs. In statistical pattern
recognition literature, it is known as a multinomial classifier
(Cochran & Hopkins, 1961; Lachenbruch & Goldstein, 1979;
Linhart, 1959). Assume that we have L expert classifiers, where
the j th expert classifies unknown input vector x into one of
the K j classes (states). For the sake of generality, we supposed
that the various expert classifiers can be good specialists in
classifying into a different number of classes. In standard
situations, K j = K . Denote the decision made by the j th expert
by o j . The total number of possible combinations (states, cells)
of L crisp outputs o1, o2, . . . , oL is m =

∏L
j=1 K j . Each vector,

o, can assume only one state, sr , out of the m possible states,
s1, s2, . . . , sm . To design a fusion rule, we take into account
that o = (o1, o2, . . . , oL)T is a discrete valued random vector.
Then the conditional distribution of the sth class vector o is
characterised by m probabilities

P(s)
1 , P(s)

2 , . . . , P(s)
m−1, P(s)

m ,

with
m∑

r=1

P(s)
r = 1, (s = 1, 2, . . . , K ). (8)

The Bayes rule makes the final classification according to the
maximal value of the products

q1 P(1)
r , q2 P(2)

r , . . . , qK P(K )
r . (9)

To design a BKS classifier, we have to know all probabilities
P(1)

1 , . . . , P(K )
m . Let the fusion rule provide its solution only on

the basis of the class labels and probabilities P(1)
1 , . . . , P(K )

m be
known. Then the BKS rule is the optimal (Bayes) fusion rule.

In general, the multinomial classifier-based fusion rule will
fail against ideal oracle, the fusion rule that utilizes certain
additional information (vector x). We have such an example
in Fig. 3(a). Here we see decision boundaries (1, 2, 3) of three
MLP (h = 7) base classifiers that perform very well in different
areas of the input feature space. Three MLPs were trained by
vectors of different compact areas of feature space divided by
lines x1 = constant. Each base classifier is a good expert in
his own “area of competence”. None of them, however, is a
good classifier in the entire input feature space: they produce
22.5%, 22.5% and 24.3% classification errors, respectively. In
the example with the palm data and three base experts, the ideal
oracle can classify both training and test data vectors without
error.

The multinomial classifier-based fusion rule is useful: it
outperforms the best individual expert. Unfortunately, complex,
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non-linear expert classifiers can form cells where vectors that
fall into one single cell can be distant in the original feature
space. In Fig. 3(a), we have three such cells, the 001th,
100th and 101th. The vectors in these cells, belong to distinct
classes. For that reason, the multinomial rule with three experts
makes a large number of classification errors (16.75%). In the
next section, we will have an example where four additional
expert MLP classifiers are added. Then the BKS fusion rule
generalizes without error.

In practice, K × (m − 1) probabilities P(1)
1 , P(1)

2 , . . . , P(K )
m

are unknown and have to be estimated from training data.
One can use the maximum likelihood estimates of prior
probabilities, qs , and the probabilities of the cells, P(s)

r , q̂s =

Ns/
∑K

s=1 Ns , P̂(s)
r = n(s)

r /Ns , where n(s)
r is a number of

training vectors from Πs in the r th cell. In such a case, the
allocation of vector o is performed according to the majority
of training vectors in the r th cell. Consequently, we have the
sample-based multinomial classifier. If the number of training
vectors in some of the cells is equal to zero, a useful alternative
way to estimate the unknown probabilities, P(s)

r , is the Bayes
predictive approach (see e.g. Fukunaga (1990) and Raudys
(2001b)). For uninformative uniform prior distribution of the
cell’s probabilities P(s)

1 , P(s)
2 , . . . , P(s)

m−1, P(s)
m , the predictive

Bayes methodology gives P̂(s)
r Bayes = (P̂(s)

r + 1)/(Ns + m).

Three main drawbacks of the sample-based multinomial
classifier. First, the vectors of one single cell can be distant
in the original feature space and belong to diverse categories.
An example we have had in Fig. 3(a): vectors in cells 001, 100
and 101 belong to two classes.

Second, difficulty arises when we have many experts and
many pattern classes. Then the number of cells, m, becomes
extremely large. For example, in the character classification
problem, with 2 × 26 = 52 pattern classes and 5 experts,
m = 525

= 380,204,032. It is difficult to realize such a
classification rule and estimate 760,408,062 probabilities.

Third, difficulties arise if we take into account that the number
of training vectors used to estimate the cells’ probabilities
P(s)

1 , P(s)
2 , . . . , P(s)

m−1, P(s)
m (s = 1, 2, . . . , K ), is finite. Most

of the states will be empty! Empty cells can be assigned to the
class with the highest prior probability. If the prior probabilities
are equal, the assignment can be arbitrary. In this situation, one
can use a number of existing Boolean algebra or combinatory
techniques in order to simplify the “decision-making path”. To
estimate cells’ probabilities, Kang (2003) utilized the second-
and third-order dependence tree models. Güler, Sankur, Kahya,
Skurichina, and Raudys (1996), Janeliunas and Raudys (2002),
Raudys (2003) and Raudys and Roli (2003) added a noise
to learning data. They trained the BKS rule on an artificially
created training set. In such a way, small sample properties of
the fusion rule were improved.

Decision tree classifier (Breiman, Friedman, Olshen, & Stone,
1984; Lbov, 1981; Quinlan, 1993) is one more possibility for
building a simpler allocation rule. Here, the decision-making
process is represented as a tree with a relatively small number
of final leaves mfinal. To simplify the decision-making path, we
merge final leaves and “branches” with identical classifications.
Fig. 3(a) shows that cell 011 is empty and its class membership
could be arbitrary. In cell 101, we have training vectors of
both classes. Vectors in this cell will be allocated to class Π1.
So, in the decision tree classifier, the third expert will perform
classification at first and will assign class number Π1 if o3 = 1.
If o3 = 0, the first expert will perform classification after that.
The decision tree will assign class number Π0 if o1 = 0, and
Π2 if o1 = 1. In such a decision-making rule, we have three
final leaves instead of eight ones in the multinomial classifier.
From the point of view of learning data sets, conversion of
a multinomial classifier into a simple decision tree does not
change the decision-making rule. Inaccuracies while estimating
the cells’ probabilities do not vanish. So, both algorithms
have the same sample size/complexity properties. In the finite
training set case, undemanding advice to simplify the allocation
rule is: use a decision tree classifier with a smaller number of
final leaves and allow a higher apparent error rate.

3.3. Sample-based oracles

The oracle assigns decision making to one of the experts. It
is a hypothetical fusion rule that utilizes crisp outputs of experts
and additional information, the input vector x. If at least one of
the classifiers produces the correct class label, then the oracle
produces the correct class label too (Kuncheva, 2004). In some
sense, the oracle evaluates an excellence of a set of several
base classifiers. Therefore, it is usually used in comparative
experiments.

It is worth noting that classification error of the oracle
classifier, although sometimes useful for comparisons, may also
contain no or little information on the combined classifier. A
simple example is MCS of two base classifiers, one always
outputting class 1, and the other one outputting class 2. Then
the oracle classifier has a 100% recognition rate.

The example presented in Fig. 3(a) was a good illustration of
the non-optimality of the multinomial fusion rule. Vectors of the
101th cell belong to both categories and the multinomial rule,
in principle, cannot resolve this dilemma. In such a situation,
the oracle, however, can perform ideal classification. Several
versions of sample-based oracles have been suggested.

Use of the input vector to design the oracle. In the Rastrigin
and Erenstein (1973, 1981) approach, the sample-based oracle
(the boss, governor) uses additional information, the input
vector x, in order to decide which expert is the most competent
to classify this particular vector, x. Thus, the boss’s fusion rule
allocates vector x to one of L virtual pattern classes (recall
that L is the number of expert classifiers). The j th expert’s
competence is estimated as a “potential”

p̂ j (x) =

K∑
s=1

Ns∑
l=1

qs
jlκ{D(x, x(s)

l )/λ2
}, ( j = 1, 2, . . . , L),

(10)

where qs
jl = 1 if training vector x(s)

l was classified by the

j th expert correctly, and x(s)
l = −1 if the vector x(s)

l was
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Fig. 4. (a) Decision boundary of sample-based oracle; (b) decision boundaries (4, 5, 6, 7) of four MLP (h = 7) classifiers that are perfect experts in distinct compact
areas of the input feature space.
classified incorrectly, D(x, x(s)
l ) is the distance between vectors

x and x(s)
l , κ(D) is a kernel or a smoothing function, and λ is a

smoothing constant.
In fusion, the expert with maximal sum, p̂ j (x), performs the

classification of vector x. To find the most competent expert,
Rastrigin and Erenstein (1981) utilized a potential function
classifier. The potential function classifiers, in effect, are very
similar to the well-known and popular non-parametric Kernel
Discriminant Analysis discussed in Section 3.2. In Fig. 3(b), we
have depicted ‘competence areas’ for the three expert classifiers
shown in Fig. 3(a). As the kernel, the Gaussian window (Eq.
(7)) with A = I and λ = 0.01 was used.

The non-linear decision boundary of the ensemble of
three MLP-based base classifiers with the sample-based non-
parametric oracle is depicted in Fig. 4(a). We see that, with
1000 training samples from one category, the fusion rule based
on the KDA approach allows obtaining a perfect sample-based
oracle (almost faultless classification of the test set). Recall that,
in classifying test set vectors, the multinomial rule performed
much worse, with 16.75% error.

An alternative way to KDA approach in experts’ fusion
is to use a k-nearest neighbour classifier (Sabourin, Mitiche,
Thomas, & Nagy, 1993; Woods, Kegelmeyer, & Bowyer, 1997).
In the high-dimensional space and finite design set situations,
however, both the KDA and k-nearest neighbour estimates
become inaccurate (Raudys (1991, 2001b); see also Part II of
this paper).

Use of the experts’ outputs to design the sample-based
oracle. Giacinto, Roli, and Fumera (2000) proposed the
sample-based oracle called dynamic expert selection. While
classifying vector o, they used the classifiers’ outputs to
evaluate the experts’ accuracy and selected the most competent
one to classify vector o. If the L experts give crisp outputs
o1, o2, . . . , oL , then the classifier accuracy is estimated as
the fraction of training (or validation) patterns with the same
combination of outputs, o1, o2, . . . , oL . In such a case, the
sample-based oracle is implemented as the BKS (multinomial)
classifier. We recall that the total number of combinations is
m =

∏L
j=1 mj . If, for input vector x, the L experts provide

continuous outputs, o1, o2, . . . , oL , then a special calculation
schema was suggested in order to evaluate the classifiers’
accuracy and select the most competent of them. This schema
is similar to the non-parametric KDA approach.

Differently from the Rastrigin and Erenstein methodology,
in order to design the sample-based oracle, rather than the
input vector x, the experts’ outputs, o = (o1, o2, . . . , oL)T,
were used. To reduce dimensionality, only experts with
highest o j were considered. The fusion rule became faster and
acquired enhanced small sample properties. Giacinto and Roli
(2001) also proposed a modification of a sample-based oracle
that uses both the input vector and the experts’ outputs in order
to perform dynamic classifier selection. First, in the training
data, one finds the k-nearest neighbours to the input pattern
vector x. Then the experts’ output vectors, o1, o2, . . . , ok , of
the k-nearest neighbours were calculated and used to compute
the experts’ local accuracies and to select the most competent
expert.

4. Illustration

Artificial palm data was used as a testing ground example
to illustrate specific characteristics of the fusion rule design
methodologies. MLPs with seven hidden units were used as
the base classifiers (see Figs 3(a) and 4(b)). 1000 artificially
generated vectors from each category were used for training.
1000 vectors from each category composed the test set. Since
the training set was large, it was used as a validation set in order
to determine the optimal number of iterations in local expert
and fusion rule training. In order to have dissimilar experts, the
MLPs were trained by standard back propagation with diverse
sets selected from regions of the feature space divided by lines
x1 = constant. Training and test errors are presented in Table 1.
Generalization error of the best expert is shown in bold.

Fusion rules compared. Note that two experts’ combinations,
composed of either the first three experts or the last four experts,
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Table 1
Training and test errors for 2D artificial palm data

Expert 1 2 3 4 5 6 7

Training data error 0.2180 0.2335 0.2190 0.3265 0.3025 0.3475 0.3145
Test data error 0.2245 0.2245 0.2425 0.3100 0.3175 0.3360 0.3305
Table 2
Performance of different fusion rules

Aggregates Oracle Multinomial Voting SLP Fisher Quadr. SLP Q

1, 2, 3 0.001 0.1675/0.1675 0.2030 0.1675 0.2030 0.2030 0.1675
1, 2, 3, 4 0.001 0.0580/0.0580 0.1375 0.0580 0.0935 0.0580 0.0580
1, 2, 3, 4, 5 0.000 0.0110/0.0115 0.0825 0.0115 0.0130 0.0120 0.0115
1, 2, 3, 4, 5, 6, 7 0.000 0.0035/0.0045 0.1750 0.0055 0.0130 0.2915 0.0045
4, 5, 6, 7 0.002 0.0055/0.0055 0.3270 0.0055 0.0500 0.2920 0.0055
resulted in zero classification error if ideal oracles were used for
fusion. The majority voting rule was used as the benchmark
method. Two other rules included for comparison were the
weighted voting and the BKS rule.

In the experiments, we consider four weighted average
fusion rules: (a) single-layer perceptron trained in the linearly
transformed (whitened) experts’ output space (details in Raudys
(2001b, chap. 5)), (b) Fisher linear discriminant function, (c)
the standard quadratic discriminant function (Quadr), and (d)
the SLP classifier in the polynomial feature space (o1, o2, o2

1,
o1o2, o2

2, . . .). The latter classifier is named SLP Q.
Results. Table 2 contains estimates of the generalization error,
evaluated for five aggregates of the experts. Results for the best
fusion rules (for crisp outputs of the experts) are shown in bold.
For the multinomial classifiers, we present two generalization
error values: left—of the “ideal rule” (estimates of probabilities
P(s)

1 , P(s)
2 , . . . , P , (s = 1, 2) were obtained from the test

set) and right—error rate of the training set-based rule. The
difference between these two classification error estimates
serves as an indicator of the training set size sufficiency. Table 2
shows that, when the number of experts is small (3–4), the
re-substitution and the test error rate estimates (left and right
values in the column for the multinomial classifier) coincide.
This means that we do not have small sample effects. For a
larger number of experts (L ≥ 5), we become aware of small
sample effects: classification errors of ideal and learning set-
based multinomial rules differ.

Table 2 shows that the SLP-based linear and quadratic fusion
rules are close in accuracy to the non-parametric local fusion
rule—the multinomial classifier. In the large learning set size
case, majority voting, SLP and standard Fischer classifiers were
notably worse in comparison to the multinomial rule and to the
SLP.

For a small number of experts the multinomial rule is easily
outperformed by the ideal fusion rule, the oracle. Earlier, we
already explained the reason: vectors that fall into one single
cell (101) belong to opposite categories and are distant in
the original feature space (Fig. 3(a)). For that reason, for the
aggregate composed of the first three experts, we performed
additional experiment. We designed and compared linear SLP
and non-linear KDA classifiers in the continuous space of the
local experts’ outputs. The best linear discrimination performed
by means of the SLP resulted in 0.1675 test error. It is actually
the same performance as the SLP-based fusion rule’s in the
experts’ crisp output space. Using the non-linear fusion rule, the
KDA classifier, helped to reduce the generalization error up to
0.012! The experiments of Section 3.1also demonstrated that, in
the three first experts’ space, the Rastrigin and Erenstein oracle
performed very well too. This example makes evident the non-
optimality of the classical version of the BKS fusion rule when
using a small number of complex, non-linear experts. For a
large number of experts, however, employing crisp outputs was
advantageous: the generalization errors of both the BKS- and
SLP-based fusion rules approach zero. In these experiments,
the majority voting rule was always the worst.

The results obtained with artificial data do not generalize.
They illustrate the fusion algorithms and explain reasons why
a certain fusion rule does not work agreeably, even in large
sample size situations. Experiments with real-world data sets
(Fumera & Roli, 2005; Raudys, 2001a; Roli, Raudys, &
Marcialis, 2002) supported the above conclusions: (a) if the
number of experts is low and they are based on different subsets
of data, BKS- and SLP-based fusion rules are good in the large
sample case; (b) if the number of experts is high and they do not
differ in accuracy, the simple average rule or majority voting are
preferable in the small sample case.

5. Discussion

Multiple classifier systems provide a way to introduce
informal user’s information into the classifier’s design. In
this approach, the original pattern recognition task (the data,
features, etc.) is divided into several parts. Then, a cooperative
decision is made. If the fusion rule is fixed a priori, the designer
assumes implicitly that both the separation of the pattern
recognition problem into parts and/or splitting the design data
set have been performed correctly. Use of trainable fusion rules
in an implicit way illustrates the designer’s disbelief that all
information contained in the base classifiers design was already
extracted from design data.

The first conclusion following from our analysis concerns
the choice between crisp and continuous outputs of expert
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classifiers: if one succeeds in having a small number of
expert classifiers working perfectly in different parts of the
input feature space, then crisp outputs may be preferable over
continuous outputs. Exceptions arise if the collective of experts
form the cells with distant training vectors of diverse categories
inside particular cells. For that reason, new modifications of the
BKS method should be developed.

If the experts are incompetent in any part of the input
feature space and the numbers of categories and experts are
small, then using the continuous experts’ outputs could be more
useful. In such a case, the difficulties of the pattern recognition
task could be transmitted onto the boss’s shoulders: to obtain
reliable MCS, the boss needs to design a complex non-linear
fusion rule. In general, in order to utilize a multiple classifier
system effectively, a trainable fusion rule should be designed in
low-dimensional feature space. To fulfill this requirement, the
number of experts and the number of pattern classes must not
to be large.

However, the theoretical considerations of Section 3 indicate
that, in optimal weighted average fusion, we obtain negative
weights. This suggests new research directions for seeking
methods to improve the coverage of the expert classifiers in
MCS design. A successful attempt to do this for a simple
average rule was made in Islam, Yao, and Murase (2003)
recently.

A variety of linear and non-linear classification algorithms
developed in statistical pattern recognition can serve as
trainable fusion rules. The relative value of different fusion
rules depends on the associations between the experts, the
fusion rule’s complexity and the sample size. Sample size issues
and possible ways to resolve the problems will be discussed in
Part II of this paper (Raudys, 2006).
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1516 Š. Raudys / Neural Networks 19 (2006) 1506–1516
Raudys, S. (1991). On the effectiveness of Parzen window classifier.
Informatica, 2, 434–454.

Raudys, S. (1998). Evolution and generalization of a single neurone. I. SLP as
seven statistical classifiers. Neural Networks, 11, 283–296.

Raudys, S. (2001a). Combining the expert networks: a review. In R. Sadykhov
(Ed.), Proc. of internat. conf. on neural networks and artificial intelligence
(pp. 81–91). Minsk.

Raudys, S. (2001b). Statistical and neural classifiers: An integrated approach
to design. London: Springer-Verlag.

Raudys, S. (2002). Multiple classification systems in the context of feature
extraction and selection. In Lecture notes in computer science: Vol. 2364
(pp. 27–41).

Raudys, S. (2003). Experts’ boasting in trainable fusion rules. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25, 1178–1182.

Raudys, S. (2006). Trainable fusion rules. II. Small sample-size effects. Neural
Networks. doi:10.1016/j.neunet.2006.01.019.

Raudys, S., & Jain, A. K. (1991). Small sample size effects in statistical
pattern recognition: Recommendations for practitioners. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13, 252–264.

Raudys, S., & Roli, F. (2003). The behavior knowledge space fusion
method: analysis of generalization error and strategies for performance
improvement. In Lecture notes in computer science: Vol. 2709 (pp. 55–64).
Roli, F., Raudys, S., & Marcialis, G. L. (2002). An experimental comparison

of fixed and trained rules for crisp classifiers outputs. In Lecture notes in
computer science: Vol. 2364 (pp. 232–241).

Sabourin, M., Mitiche, A., Thomas, D., & Nagy, G. (1993). Classifier
combination for handprinted digit recognition. In Proc. second int. conf.
document analysis and recognition (pp. 163–166).

Telksnys, L. (1968). Two-stage optimal recognition systems. Cybernetics, 4(2),
89–92. Kiev.

Ueda, N. L. (2000). Optimal linear combination of neural networks for
improving classification performance. IEEE Transactions on Pattern
Analysis and Machine Inteligence, 22, 207–215.

Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin:
Springer-Verlag.

Woods, K., Kegelmeyer, W. P., & Bowyer, K. (1997). Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19, 405–410.

Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multiple
experts for the recognition of unconstrained handwritten numerals. IEEE
Transactions Systems Man and Cybernetics, 22, 418–435.

http://dx.doi.org/doi:10.1016/j.neunet.2006.01.019

	Trainable fusion rules. I. Large sample size case
	Introduction
	Continuous versus crisp outputs of the expert classifiers
	Fixed and trainable fusion rules
	Linear rules
	Non-linear rules
	Sample-based oracles

	Illustration
	Discussion
	Acknowledgments
	References


