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Scaled rotation regularization
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Abstract

A new regularization method - a scaled rotation - is proposed and compared with the standard linear regularized
discriminant analysis. A sense of the method consists in the singular value decomposition S5TDT@ of a sample
covariance matrix S and a use of the following representation of an inverse of the covariance matrix
S~1"Ta(D#jI)~1Ta@. For certain data structures the scaled rotation helps to reduce the generalization error in small
learning-set and high dimensionality cases. E$cacy of the scaled rotation increases if one transforms the data by
y"(D#jI)~1@2Ta@x and uses an optimally stopped single layer perceptron classi"er afterwards. ( 2000 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Regularized discriminant analysis; Learning-set size; Dimensionality; Single-layer perceptron; Generalization; Scaled
rotation

1. Introduction

An essential factor while designing any pattern recog-
nition system is a learning-set size/dimensionality ratio.
In standard linear and quadratic discrimianant analysis,
one needs to estimate the population covariance matrix
and invert it. When p, the dimensionality of the feature
vector, exceeds n, the number of observations used to
estimate the covariance matrix &, the estimate S of the
matrix becomes singular and one cannot invert it. A sim-
ilar problem arises when n is close to p.

There are a number of ways to overcome these kinds of
di$culties. We can categorize these techniques into the
following three groups [1]:

(a) dimensionality reduction by feature extraction or fea-
ture selection,

(b) structurization of the true covariance matrix &, and its
description by a small number of parameters. Exam-
ples are diagonal structurization, block structuriz-
ation, or Toeplitz matrix.
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(c) regularization of the sample covariance matrix. The
simplest and the most popular example is a use of
a shrinkage (ridge) estimate [2,3]

SRDA"S#jI, (1)

where S is the conventional maximum likelihood esti-
mate of the covariance matrix &, I is a p]p identity
matrix and j is a positive regularization constant. In this
paper we will analyse the third group more thoroughly.

The classical linear regularized discriminant analysis
(RDA) can be obtained or explained from di!erent ap-
proaches. It can be obtained from a predictive Bayes
approach if one assumes a prior distribution of &~1 to be
a Wishart =

m
(p, I), where m is a number of degrees of

freedom [4,5]. Then j, the regularization parameter, is
uniquely related to m and also n, the sample size used to
estimate the covariance matrix. The weight vector of the
linear RDA

wRDA"(S#jI)~1 (x6 (1)!x6 (2))), (2)

can also be obtained after an adaptive minimization of
the conventional sum of squares cost function of the
standard linear perceptron with a `weight decaya term
[6]. In Eq. (2), x6 (1), x6 (2) are sample mean vectors. The
weight vector (2) also can be obtained in the adaptive
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linear (and even nonlinear SLP, if we start training from
zero initial weights) SLP training after the "rst few iter-
ations if the following conditions are satis"ed: (E1)
the centre of the data is moved to the zero point, (E2)
if N

2
"N

1
"N, we use symmetrical targets, (E3) we

start training from zero weights, and (E4) we use the total
gradient training [7,8]. Then, after the "rst iteration,
we obtain the classi"er equivalent to the Euclidean
distance classi"er (EDC), and after t iterations, a weight
vector that is equivalent to that resulting from the linear
RDA. The regularization parameter j changes during
training; it decreases with an increase in the number of
iterations t.

In a modi"cation of the standard ridge estimate, in-
stead of the term jI, some authors use j tr(S)/pI. In our
experiments reported in Section 3, we also tested the
regularized estimate SJS#jI, with James and Stein es-
timator SJS"TDJST@, where T is a p]p eigenvectors
matrix of S, DJS is a p]p diagonal matrix composed
of estimates dJS

j
"(n!1)/(n#p!2j) d

j
, and d

1
,2, d

p
are eigenvalues of the matrix S in the singular-value
decomposition S5TDT@ [9].

One more way to overcome numerical di$culties asso-
ciated with the badly conditioned covariance matrix is
to use pseudoinversion. Such approaches have been used
in statistical pattern recognition [10}12]. In the standard
linear RDA we add the constant j to each singular value
d
j

of S. In the pseudoinversion approach, one ignores
directions with zero eigenvalues:

SP4%6$0*/7%34%"T
r
(D

r
)~1T@

r
, (3)

where D
r
is an r]r diagonal matrix composed of r non-

zero eigenvalues d
1
, d

2
,2, d

r
, T

r
is a p]r left-eigenvec-

tors matrix corresponding to the eigenvalues d
1
,2, d

r
. It

was noticed experimentally [12] and shown theoretically
[13] that usage of the pseudoinversion helps to reduce
the generalization error when n(p.

In the standard linear RDA, when the parameter j de-
creases and approaches zero, the linear classi"er formed
using Eq. (1) tends to the standard Fisher linear dis-
criminant function (DF).

When j increases and tends to in"nity, the sample
covariance matrix S is increasingly ignored, and the lin-
ear classi"er tends to the Euclidean distance classi"er
(EDC). In the multivariate Gaussian N(k

i
, &) case (we

will call it the GCCM class model of the data), the
generalization error of EDC (the SLP classi"er after
the "rst iteration) [14}17] is

EP(EDC)
N

+'G!
dH
2

1

J1#2pH/dH2N2H, (4)

where

'MaN"P
a

~=

(2p)~1@2p~1 expM!t2/(2p2)N dt,

N"N
1
"N

2
.

¹Hk"1#
2pH

dH2N
, dH"

k@k

Jk@&k

and determines the separability of the pattern classes,

k"k
1
!k

2
and pH"

(k@k)2(tr &2)

(k@&k)2

which we call the intrinsic dimensionality of the GCCM
data for the Euclidean distance classi"er. From the def-
inition, it is clear that 1(pH(R.

The term ¹Hk indicates that small sample properties of
this classi"er are highly a!ected by the true distribution
densities of the classes. When & is proportional to the
identity matrix pH"p, the classi"er is relatively insensi-
tive to the learning-set size. However, for data con"gura-
tions with high intrinsic dimensionality pH, EDC is very
sensitive to the learning-set size.

The generalization error of the standard Fisher linear
classi"er (the SLP classi"er after many iterations)
[15}17] is

EP(F)
N
+'G!

d
2

1

J¹k¹&
H, (5)

where d is the Mahalanobis distance, the term
¹k"1#2p/d2N arises from an inexact sample estima-
tion of the mean vectors of the classes, and the term
¹&"1#p/(2N!p) arises from an inexact sample es-
timation of the covariance matrix.

For very small samples, and many con"gurations of
parameters of distributions of the pattern classes, EDC
can outperform the standard Fisher classi"er. Therefore
a change of j balances the classi"er between the simple
EDC and the more complex Fisher classi"er, and can
help to reduce the generalization error in small learning-
set cases [6]. However con"gurations of the parameters
exist (e.g. when & is close to singular, and/or pHAp),
where EDC is very sensitive to the "niteness of the
learning set size and results in very high asymptotic
errors [17]. In such situations, both the Fisher classi"er
and EDC perform poorly, and the standard regularization
is not ewective.

An objective of the present paper is to "nd a way to
improve performance of the standard linear RDA.

2. A scaled rotation

Above we presented one possible reason for the low
e$cacy of the standard RDA in certain situations* the
potentially high value of pH, the `intrinsic dimensional-
itya of the data for EDC. A possible way to improve the
estimate of the sample covariance matrix is to regularize
the matrix S only in directions with nonzero eigenvalues.
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Thus, we reduce the matrix S regularization in directions
associated with zero variability.

In the pseudoinversion approach and di!erent modi"-
cations of RDA reported in the introduction, one actu-
ally manipulates only the eigenvalues of the sample
covariance matrix. Nothing is done with the eigenvectors.
In the small learning-set case, however, the eigenvectors
are estimated with error as well, and one may hope that
a certain simpli"cation of these estimates at times can be
useful too.

Let us introduce a new `regularizeda estimate of the
eigenvectors matrix in the singular-value decomposition
S5TDT@,

T
/%8

"Ta, (6)

where a scalar parameter a controls a similarity of
T
/%8

to the conventional sample estimate T (a"1), and
to the identity matrix I (a"0).

Then, we propose the following new double regularized
estimate of the covariance matrix:

SSR"Ta(D#jI)Ta@. (7)

In this estimate, we control the rotation of the sample
covariance matrix by the parameter a. We control the
scaling of the covariance matrix by the parameter j:
the modi"ed diagonal matrix D # jI is composed of
the components d

1
#j, d

2
#j,2, d

p
#j. We will call

this regularization technique the `scaled rotationa (SR).

3. Simulation experiments with arti5cial data

The scaled rotation is controlled by two parameters,
a and j. In order to investigate the usefulness of di!erent
regularization methods one needs to obtain analytical
expressions for the generalization error. This can be done
by using Taylor series expansions (see e.g. an expansion
with respect to j in our earlier paper [6]). It is di$cult,
however, to obtain expansions accurate enough for a
wide range of values of a and j. Therefore, the analysis of
the e$cacy of the new technique was performed by
means of simulation. In the simulation experiments
that follow, we examine the two-class case of a linear
discriminant anlaysis with arti"cial Gaussian N(k

1
,

&), N(k
2
, &) data models. We estimated the weight vector

(w
0
, w) of di!erent modi"cations of the linear dis-

criminant function by using di!erent randomly chosen
learning-sets, and calculated the generalization error
P
N

analytically:

P
N
"

1

2
'G!

w
0
#w@k

1
Jw@&~1wH#

1

2
'G

w
0
#w@k

2
Jw@&~1wH. (8)

The following linear classi"ers were examined in this
section:

f RDA * the standard linear regularized discriminant
analysis with the optimal j evaluated from minimum
values of the generalization error,

f Pseudo * the pseudo-Fisher classi"er with estimate
(3),

f EDC * the Euclidean distance classi"er,
f SR* the regularized linear discriminant analysis with

the scaled rotation, where the optimal values of the
parameters a and j were chosen to minimize an esti-
mate of the generalization error.

To determine the optimal values of the regularization
parameters in each learning experiment with one learn-
ing-set, we used a grid formed by 50 values of j

1
"

j/(1!j) in an interval (0, 1), and ka"25 values of
a (a"0, 1/16, 1/8, 2, 23/16, 3/2). For calculations we
used a Matlab package. E.g., to obtain Ta, we used
commands: T

2
"sqrtm (T); T

4
"sqrtm (T

2
); T

8
"

sqrtm (T
4
); T

16
"sqrtm (T

8
). Then for a"7/16 we

wrote: if a""7Ta"real (T
4
HT

16
HT

8
); end. In prin-

ciple, one can use more `naturala parameterizations of
the covariance matrix, such as described in Pinheiro and
Bates [18] and used in subsequent studies [19]. Inciden-
tally, we also analysed two modi"cations of the standard
linear RDA with jtr(S)/pI, and a James and Stein es-
timator [9] with dJS

j
"(n!1)/(n#p!2j) dj; however no

gain was obtained.
We concentrated our analysis mainly on a case when

the number of learning examples n"N
1
#N

2
"2N is

smaller than the number of dimensions p of the feature
vector. We used 40-variate arti"cial Gaussian data vec-
tors as Friedman [20] did in his analysis on RDA in the
quadratic case, and we have chosen N

1
"N

2
"N"13,

the same dimensionality/ sample size ratio, as in Fried-
man's experiments. Data were generated according to the
following con"gurations of eigenvalues and mean di!er-
ences (with associated codings in parentheses):

(1) True eigenvalues set to j536%
j

"(9(j!1)/ (p!1)
#1)2, values used by Friedman (coded by Fj).

(2) True eigenvalues set to j536%
j

"100 e(j~1)@2#0.05
(coded by expj) along with

(1) mean di!erences *k536%
j

"2.5Jd
j
/p (p!j)/

(p/2!1) (that is, "rst features are most infor-
mative * coded as Fk"rst)

(2) mean di!erences *k536%
j

"2.5Jd
j
/p (j!1)/

(p/2!1) (last features are most informative
* coded as Fklast).

(3) *k536%
j

"d
j
for j"1, 2,2, p/2, and *k536%

j
"0 f

or j"p/2#1, 2,2, p (the last p/2 features are
uninformative * coded as Myk).

The speci"c combinations of the eignevalues/mean dif-
ferences that we used are evident in the tables as the
`producta of the corresponding codes. For example, in
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Table 1
The mean generalization error EPRDA

n
of the standard linear RDA and the relative e$cacy of the pseudo-Fisher classi"er, EDC, the

scaled rotation, SLP, and SLP with scaled rotation (upper rows), and standard deviations (lower rows)

Classi"cation method
data type

EP
n

RDA
c
Pseudo-Fisher

c
EDC

c
Scaled rotation

c
SLP

c
Scaled rotation and SLP

FjFk"rst 0.210 0.634 0.828 1.212 0.966 1.286
p"40, N"13 0.036 0.129 0.099 0.188 0.058 0.226
expjFk"rst 0.108 0.662 0.605 1.037 0.866 1.054
p"40, N"13 0.022 0.119 0.160 0.085 0.164 0.092
FjFklast 0.057 0.344 0.988 1.043 1.017 1.055
p"40, N"13 0.007 0.101 0.034 0.066 0.044 0.069
FjMyk 0.145 0.523 0.784 1.379 0.976 1.452
p"40, N"13 0.034 0.142 0.115 0.300 0.086 0.328
FjMykT39 0.140 0.560 0.789 1.639 0.981 1.772
p"40, N"13 0.031 0.164 0.107 0.353 0.074 0.352
FjMykT39, N"13H 0.212 0.753 0.863 2.649 1.039 2.855

order to examine the in#uence of directions with
zero discriminitive information, we combined the eigen-
values Fj with the mean di!erences in Myk to give
Fj Myk.

The di!erences *k536%
j

in the means of all arti"cial data
sets were normalized in order to obtain the Mahalanobis
distance d"3.76* this corresponds to the Bayes error
P
B
"0.03. Afterwards the data were rotated using

randomly generated orthonormal matrices T
3!/$0.

. A
left/upper triangle of T

3!/$0.
"((t

ij
)) was composed

from (p!1)p/2 random N(d
ij
, 1) variables (d

ij
is the

Kronecker symbol). The remaining p (p#1)/2 compo-
nents of T

3!/$0.
were calculated in a way to ful"l the

orthonormality condition T@
3!/$0.

T
3!/$0. >

"I. The or-
thonormal transformation of the data does not change
the asymptotic classi"cation error, however, it a!ects
training peculiarities of the nonlinear single-layer percep-
tron used in our experiments. For each set of j536%

j
and

*k536%
j

( j"40) we generated 100 random 40]40 rotation
matrices T

3!/$0.
, and a new random learning set com-

posed of n"2N"26 40-variate random vectors.
The results from this simulation are presented in the
"rst "ve columns of Table 1. In the "rst column, we
present the code for the con"guration, the dimensionality
of the feature vector p, and the learning-set size N. In the
second column, we present mean values and standard
deviations of the generalization error of the standard
RDA with optimal value of j. In the following columns,
we present the relative e$cacy of di!erent classi"ers
c"PRDA

n
/P#-!44*&*%3

n
. This is the generalization error of our

benchmark method * the optimized standard RDA
divided by the generalization error of the classi"er under
consideration in the particular column. Estimates pre-
sented in the last two columns correspond to additional
use of the single-layer perceptron and will be discussed
later in Section 5. The upper rows correspond to mean
values and the lower ones to standard deviations.

The "fth row of the Table 1, `FjMykT39a, corres-
ponds to one particular randomly generated transforma-
tion matrix, the 39th, TH39

3!/$0.
, for which with model

FjMyk we obtained a high e$cacy for the scaled rota-
tion regularization. This row of the table presents results
where we generated 100 independent random learning
sets using only one particular transformation matrix
TH39
3!/$0.

. Mean values corresponding to one (the 71th)
random learning-set with the highest e$cacy of the SR
method are displayed in the sixth row (coded N"13H).

The simulation experiments with the arti"cial Gaus-
sian data show that data structures exist where the scaled
rotation increases the ezcacy of the standard RDA. The
highest average gain in e$cacy we obtained using 100
randomly chosen learning-sets was 1.64, and 2.65, using
one particular learning-set. Thus, the generalization error
was reduced from 0.212 for the standard RDA to 0.08
for the scaled rotation. Note that this comparison is
made using one of the most e!ective [20] regularization
techniques for statistical classi"cation methods * the
optimized RDA. However, the scaled rotation is not a
universal method: for some data structures we obtained
no or very insigni"cant gain. For the GCCM data model
the success of the scaled rotation depends on *k and &:
a mutual distribution of true eigenvalues d

j
(true) of the

matrix & and the di!erence in the means *k
j
(true), as

well as on the transformation matrix T
3!/$0.

. Individual
peculiarities of the learning-sets play a very important
role too.

4. Simulation experiments with 10 real data sets

In order to see whether the data structures favour-
able for the scaled rotation exist in real-world pattern
classi"cation problems, we also used 10 real data sets. In
Table 2, we present short characteristics of the data sets:
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Table 2
Short characteristics of the real-world data sets

No. Data name p Features' characteristics N
g1

N
g2

PFIS
R=

PSLP
R=

1. Sat Satellite 36 Energy in 9 pixels ] 4 bands 479 415 0.031 0.001
2. Chr Chromosomes 30 Banding patterns 500 500 0.014 0.006
3. Vow Vowels 28 Spectral and cepstral 400 400 0.013 0.003
4. Lung Lung sounds 66 Spectral and cepstral 180 180 0.050 0.053
5. Stock Stock 92 4 days history 610 770 0.056 0.010
6. Thyr Thyroid 18 6 continuous and 12 binary 93 191 0.021 0.000
7. Musk Musk 166 Shape of the molecule 207 269 0.050 0.057
8. Iono Ionosphere 33 Autocorrelation of radar return 127 226 0.103 0.031
9. Mam Mammograms 65 Shape, histogram, wavlets 57 29 0.000 0.000

10. Son Sonar 60 Energy in frequency bands 111 97 0.087 0.024

Table 3
The generalization errors of the standard RDA (with optimal j),
the pseudo-Fisher classi"er, the scaled rotation, the optimally
stopped SLP in the original feature space, SLP in an optimally
rotated space (R & SLP), and SLP after the optimal scaled
rotation (the best classi"er is in bold). Ten rows in the table
represent 10 randomly chosen learning-sets (N"72)

RDA P-F SR SLP R & SLP SR & SLP

0.0470 0.0626 0.0380 0.0291 0.0268 0.0380
0.0492 0.0559 0.0369 0.0503 0.0503 0.0358
0.0414 0.0783 0.0403 0.0302 0.0257 0.0336
0.0380 0.0447 0.0380 0.0414 0.0414 0.0380
0.0257 0.0671 0.0257 0.0246 0.0235 0.0257
0.0358 0.1029 0.0358 0.0380 0.0380 0.0347
0.0459 0.0660 0.0369 0.0414 0.0414 0.0369
0.0425 0.0604 0.0369 0.0168 0.0168 0.0302
0.0414 0.0526 0.0313 0.0336 0.0324 0.0291
0.0268 0.0570 0.0268 0.0268 0.0257 0.0257

the number and a code for each data set, the dimen-
sionality of the feature vector p, brief characteristics of
the feature vectors, the size of our general population:
N

g1
, N

g2
, and the `resubstitutiona error estimates of the

linear Fisher and SLP classi"ers PFIS
R=

and PSLP
R=

. These
estimates served as estimates of the asymptotic error and
helped to characterize deviations of the real-world data
sets from the GCCM model.

For training, we selected very small randomly chosen
subsets of the data composed of N vectors from each
pattern class. The generalization error of the linear
classi"ers formed using a particular random learning-set
was estimated experimentally by classifying all available
vectors (our general population). For each data set we
randomly picked 25 learning sets with the same sizes
each time, and formed the classi"ers discussed in the
arti"cial data experiments.

Our simulation studies con"rmed the previous con-
clusion: the e$cacy of each particular classi"cation
method depends on the data type. Moreover, for the real
data, we noticed that the e$cacy of di!erent methods
notably varies with N, the size of the randomly chosen
learning-set. For 10 di!erent randomly chosen learning-
sets (the learning-set size N"18), we present in the "rst
three columns of Table 3 the generalization errors of the
standard RDA (with optimal value of j), the pseudo-
Fisher classi"er, and scaled rotation for the 36-variate
Satellite data. (We will discuss estimates presented in the
last three columns later in Section 5.) In the table we see
that the scaled rotation sometimes helps to reduce the
generalization error. The best classi"er di!ers with each
learning-set. In general, the pseudo-Fisher classi"er loses
against the standard RDA. However, for some data types
and small learning-sets (2N(p) even this `unoptimala
classi"er at times results in the smallest generalization
error.

Average results obtained in 25 experiments with ran-
domly chosen learning-sets are presented in the "rst "ve
columns of Table 4. Presentation of results is similar to
that used in Table 1. We will discuss estimates presented

in the last three columns later in Section 5. Note that the
upper rows correspond to mean values and the lower
ones to standard deviations.

As a rule, distributions in the real-world di!er from the
GCCM model. For the non-Gaussian data sets con-
sidered here, the scaled rotation is not very e$cient.
However, from 10 real-world problems analysed in the
con"nes of this paper, only in two or three problems we
have rather a notable gain in comparison with the opti-
mal regularized dicriminant analysis. In the next section
we will show that an additional use of the optimally
stopped SLP increases the e$cacy of the scaled rotation.

5. Data transformations, and the single-layer perceptron

We will assume that conditions E1}E4 are satis"ed
when training the SLP classi"er. Then, after the "rst total
gradient training iteration, one obtains the Euclidean
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Table 4
The mean generalization error EPRDA

n
of the standard linear RDA and the relative e$cacy of the pseudo-Fisher classi"er, EDC, the

scaled rotation, SLP, and SLP with the scaled rotation

Class.
method
data type

Learn.
set size
Data

EP
n

of
RDA

c
Pseudo-
Fisher

c
Scaled
rotation

c
SLP

c
Optimal rotation
& SLP

c
Scaled rotation
& SLP.

c
of the
`besta classif.

Sat 18 0.043 0.200 1.093 1.212 1.224 1.158 1.328
0.010 0.146 0.088 0.463 0.475 0.160 0.422

Sat 56 0.038 0.827 1.059 1.680 1.715 1.285 1.733
0.006 0.111 0.064 0.581 0.583 0.360 0.560

Sat 72 0.034 0.841 1.026 1.767 1.785 1.204 1.794
0.005 0.104 0.054 0.672 0.676 0.152 0.666

Chro 10 0.036 0.445 1.163 1.003 1.023 1.242 1.279
0.012 0.256 0.268 0.305 0.322 0.315 0.344

Chro 20 0.026 0.249 1.079 0.913 0.922 1.128 1.131
0.007 0.139 0.088 0.149 0.146 0.106 0.103

Vow 9 0.102 0.485 1.102 1.143 1.182 1.139 1.259
0.056 0.252 0.116 0.375 0.472 0.129 0.452

Vow 14 0.073 0.274 1.112 1.116 1.126 1.171 1.254
0.025 0.123 0.162 0.312 0.313 0.167 0.272

Vow 56 0.033 0.646 1.014 1.138 1.142 1.163 1.273
0.010 0.216 0.027 0.275 0.272 0.145 0.193

Lung 22 0.260 0.622 1.072 0.993 0.996 1.086 1.089
0.050 0.113 0.055 0.064 0.065 0.059 0.058

Lung 33 0.226 0.636 1.049 0.979 0.996 1.073 1.089
0.027 0.155 0.050 0.072 0.075 0.067 0.067

Stock 31 0.326 0.821 1.001 0.793 0.821 1.124 1.146
0.045 0.206 0.008 0.112 0.110 0.204 0.207

Stock 46 0.339 0.763 1.000 0.943 0.870 1.641 1.678
0.033 0.106 0.001 0.086 0.062 0.294 0.239

Thyr 6 0.447 1.247 1.983 1.002 1.347 1.983 2.079
0.200 0.780 0.929 0.009 0.653 0.929 0.921

Thyr 9 0.397 0.718 1.813 1.004 1.090 1.813 1.813
0.205 0.278 0.727 0.017 0.240 0.727 0.727

Musk 55 0.247 0.688 1.008 1.061 1.125 1.041 1.130
0.026 0.114 0.011 0.065 0.082 0.033 0.078

Musk 83 0.216 0.678 1.011 1.092 1.133 1.080 1.162
0.023 0.119 0.015 0.099 0.086 0.057 0.075

Iono 11 0.230 0.601 1.037 1.019 1.038 1.059 1.120
0.061 0.258 0.039 0.136 0.142 0.040 0.113

Iono 16 0.191 0.497 1.089 1.073 1.145 1.138 1.210
0.057 0.187 0.141 0.114 0.174 0.152 0.184

Mamm 10 0.194 0.556 1.152 0.589 0.591 1.181 1.181
0.050 0.186 0.314 0.201 0.200 0.315 0.315

Sonar 20 0.283 0.734 1.056 1.064 1.072 1.074 1.105
0.041 0.125 0.058 0.062 0.062 0.058 0.055

Sonar 30 0.239 0.723 1.058 1.120 1.130 1.084 1.168
0.030 0.139 0.046 0.125 0.135 0.059 0.106

distance classi"er and moves further toward linear RDA
and the Fisher linear DF with conventional (when
N

1
#N

2
'p) or pseudo (when N

1
#N

2
(p) inversion

of the covariance matrix. Thus, if the training is successful
and we succeed in optimally stopping training, we can
obtain the optimal RDA by using this iterative numerical
method. With further training, the SLP classi"er can
approach the robust, the minimum empirical error and

the maximal margin classi"ers [7,8]. Therefore, if the
data di!er from Gaussian with common covariance
matrix then, in principle, with further training one can
expect to obtain a smaller generalization error. Thus, in
our experiments with the real-world data sets, we in-
cluded the SLP into the set of classi"cation methods
tested. Similar to optimal RDA and the scaled rotation,
the training of the perceptron was stopped optimally

1994 S[ . Raudys / Pattern Recognition 33 (2000) 1989}1998



according to estimates of the generalization error ob-
tained while classifying all available vectors (our general
population).

Iterative training of the single-layer perceptron be-
comes di$cult when variances of the data are di!erent in
various directions (i.e., when eigenvalues of the covari-
ance matrix & are essentially di!erent) [21]. We can try
to equalize the variances by transforming the data by
means of rotation and scaling: y"D~1@2T@x, where the
p]p matrices D and T are de"ned by the singular-value
decomposition S5TDT@. Then the sample covariance
matrix of the vector y will be the identity matrix. After
the "rst learning iteration we obtain the discrimianant
function

g(y)"(y!1
2

(y6 (1)#yN (2)))@ (yN (1)!y6 (2))) k
E

"(x!1
2

(x6 (1)#x6 (2)))@S~1 (x6 (1)!x6 (2))) k
E
, (9)

where yN (1)"D~1@2T@x6 (1), y6 (2)"D~1@2T@x6 (2), and k
E

is a
constant.

This means, when training in the transformed (y) space,
after the "rst iteration we obtain the classi"er that is
equivalent to the Euclidean distance classi"er in the
y space, and the standard linear Fisher DF in the original
(x) feature space. Now suppose we transform the data by
means of matrix G

RDA
"(D#jI)~1@2T: y"G

RDA
x.

Then after the "rst iteration we obtain the classi"er
that is equivalent to the linear RDA in the x space, and
move towards the standard linear Fisher classi"er. When
we transform the data by means of the matrix
G

SR
"(D#jI)~1@2Ta@: y"G

SR
x, after the "rst iteration

we obtain the classi"er that is equivalent to the scaled
rotation regularization in the original (x) space. When we
transform the data by the matrix Tb{(b'0): y"Tb{x,
after the "rst iteration we obtain EDC in both, the
original (x), and in the transformed (y) spaces. In sub-
sequent iterations, we have RDA, and move towards the
Fisher classi"er. When the data are Gaussian having
a common class covariance matrix, there is then only a
minor chance to reduce the generalization error in
further training. For non-Gaussian data and for di!erent
class covariance matrices, however, one can expect a
certain success.

Therefore, in the second part of our experimental
work, we tested the nonlinear SLP. In simulation ex-
periments, we translated the learning data centre
(xN (1)#xN (2))/2 into the zero point, initialized the SLP with
the zero weight vector, used the sigmoid activation func-
tion and trained the perceptron in a batch-mode with
a standard back-propagation algorithm using targets
0 and 1. In our experiments with very small learning-sets,
in order to obtain a large margin quickly, we increased
the learning step g progressively with each iteration
number t: g"0.2 * 1.03t(t

.!9
"500). The progressive in-

crease in the learning step prevents a gradient of the SLP

cost function to converge to zero and allows to obtain
the wider gamma of statistical classi"ers in the precep-
tron training [7,8]. We trained the SLP classi"er in the
following situations:

(1) in the original (x) space,
(2) in the transformed space (y"(D#jI)~1@2Ta@x),

where the optimal values of a and j were determined
in the scaled rotation experiment (SR & SLP), and

(3) in the transformed space (y"Tb@x), where we se-
lected the optimal b value after ka"25 SLP training
sessions performed for 25 rotation matrices Tb (opti-
mal rotation & SLP).

In each experiment, we determined t
015

, the optimal
stopping point. For this we used experimental estimates
of the generalization error obtained from the all available
data or theoretical values calculated from Eq. (8).
Finally, we selected the best result. The results are pre-
sented in the last two columns of Table 1 and the last four
columns of Table 4. In both tables we give the average
results. In addition, in Table 4, we have also standard
deviations.

Results for GCCM data model in Table 1 indicate
that for the Gaussian data, the e$cacy of the SLP in
the original space is almost the same as that of the
optimal RDA. Higher values of the generalization error
of the SLP typically were associated with these few
cases when 500 iterations were not su$cient to train the
perceptron.

In experiments with the non-Gaussian real-world data
(Table 4), we trained the perceptron for more (1200)
iterations. On average, the SLP allowed better generaliz-
ation than the RDA. In certain experiments, the reduc-
tion was high: e.g., 1.924% of errors for the SLP
trained in the original feature space versus 3.4% of errors
for RDA, and 3.3% for the scaled rotation (for the
Satellite data, N"72, average values). Training of the
SLP in the space obtained after the optimal scaled rota-
tion was less e$cient* 2.8% of errors. However, for the
Satellite data (N"72) a joint optimization of the rota-
tion (parameter a) and the number of iterations (t) result-
ed in the highest performance* 1.905% of classi"cation
errors, 1.785 times less than that obtained by the optimal
RDA.

It is worthwhile to note that after the transformation
y"(D#jI)~1@2Ta@x, we obtain a signixcant increase in
the learning speed: only a few training iterations were
su$cient to obtain the smallest generalization error. This
is an e!ect of the fact that succeeding this particular data
transformation we have approximately spherical data,
and after the "rst iteration we have EDC. The EDC
classi"er is suited to classify the spherical data very
well. In the experiments with the real-world data, the
type of the best classi"er depends on the data type and
the learning-set size, and to a certain extent * on a
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particular randomly chosen learning-set. For some data
sets the scaled rotation was not e$cient at all (e.g. for the
stock data). The same can be said about the SLP classi-
"er in the original feature space. For this data type, very
good results were obtained after a simple transformation:
y"(D#0.02 * I)~1@2T@x: c"1.138 for N"31 and c"
1.678 for N"46 (compare with values in Table 4) This
transformation, however, is not universal, and does not
work for all types of the data. In most cases, the addi-
tional use of SLP, however, helped to reduce the general-
ization error substantially. A general conclusion follows
that the data transformation, and subsequent training
SLP is a very useful tool, however, the transformation
type (parameters a and j) should be chosen in the experi-
mental way for each concrete pattern classi"cation prob-
lem and each particular learning-set.

6. Concluding remarks

The singular-value decomposition S5TDT@ represents
the sample covariance matrix S as a function of sample
eigenvalues D and eigenvectors T. In the conventional
regularization methods, one tries to regularize the eigen-
values only. In our approach, we also regularize the eigen-
vectors matrix. The scaled rotation SSR"Ta (D#jI)Ta@
uses two regularization parameters, a and j, and is a
mathematical model for simpler parametrization of the
covariance matrix.

The e$cacy of the joint regularization of the eigenvec-
tors and the eigenvalues depends on characteristics of the
parameters of the distribution of the data (the mutual
distribution of the eigenvalues and the components of the
di!erence in the mean vectors of the pattern classes, and
the eigenvectors matrix) as well as on peculiarities of a
particular learning-set. In experiments with the arti"cial
data, the e$cacy of the scaled rotation depends on the
data model. In principle, one can construct a data where
the scaled rotation is largely e$cient. In experiments
with the arti"cial data reported in this paper, the maxi-
mal average reduction in the generalization error of the
scaled rotation approach over the optimal standard
RDA was 1.64, and 1.77 when the scaled rotation data
transformation y"(D#jI)~1@2Ta@x and SLP were used
in addition (in the experiment with 100 learning-sets).
For some data types, we obtained zero or very insigni"c-
ant gain. In experiments with the real-world data, the
highest gain for one particular learning-set exceeded 3. It
was noticed that the highest relative gain often is ob-
tained when the generalization error of RDA is high, and
when the learning-set size is relatively small. A general
conclusion follows: the scaled rotation is not a universal
method. It is e$cient only for certain structures of the
data.

In our comparative experiments, we used optimal
values of j (for the standard RDA), a and j (for the scaled

rotation), and the number of the learning iterations
t
015

(for the SLP classi"er) estimated from the test-set
data or analytically for the Gaussian pattern classes (Eq.
(8)). Therefore, our estimates for the optimal RDA, scaled
rotation, and SLP are optimistically biased. In real ap-
plications, we will use a cross-validation method, and
will obtain a smaller gain. In spite of the fact that our
experiments do not re#ect absolute e$cacy of the scaled
rotation regularization, nevertheless, they state that,
for some types of the data and sizes of the learning-sets,
in principle, an introduction of the additional regulariz-
ation parameter (scalar a) together with usage of
SLP in the original and/or the transformed feature space
can be more powerful than the standard RDA. Addi-
tional research work should be done in order to "nd
conditions where the new method is e$cient and how to
estimate optimal regularization parameters a and
j cheaply. To verify and to improve the new regulariz-
ation method one needs to analyse a large number of the
real-world pattern classi"cation tasks, use real, "nite-
sized, validation-sets to determine the optimal regulariz-
ation parameters.

A multivariate analysis advocates that in very high-
dimensional and large design-set cases, variances of the
classi"cation error estimates are comparatively low (see
Refs. [16,22]). Therefore, in addition to a standard (the
cross-validation) way to determine the optimal values of
j, a, and t

015
and to choose the classi"cation method, a

leaving-one out or a rotation method can be applied.
Special numerical calculation schemes that speed up the
calculations should be developed.

In the present paper we analysed the e$cacy of the
scaled rotation in the linear discriminant analysis prob-
lem only. No doubt, this sample covariance matrix regu-
larization technique can be used in a quadratic pattern
classi"cation task with di!erent covariance matrices as
well as in regression.

7. Summary

The singular-value decomposition S5TDT@ represents
the sample covariance matrix S as a function of sample
eigenvalues D and eigenvectors T. In the conventional
regularization methods, one tries to regularize the eigen-
values only. In our approach, we regularize the eigenvec-
tors matrix. The scaled rotation SSR"Ta(D#jI)Ta@ uses
two regularization parameters, a and j, and is a math-
ematical model for simple parametrization of the
covariance matrix.

The e$cacy of the joint regularization of the eigenvec-
tors and the eigenvalues depends on a data structure (the
mutual distribution of the eigenvectors and the compo-
nents of a di!erence in the mean vectors of the pattern
classes, and the eigenvectors matrix) as well as on pecu-
liarities of speci"c learning-set. In experiments with the
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arti"cial data, the maximal reduction in the generaliz-
ation error of the scaled rotation approach over the
optimal standard RDA was 1.64 times, and 1.77 times
when the scaled rotation data transformation and SLP
were used in addition (averages in the experiment with
100 randomly chosen learning-sets). Prior to training the
SLP classi"er we moved the centre of the data to the zero
point; if N

2
"N

1
"N, we used symmetrical targets,

started training from zero weights, and used the total
gradient training. For some data types, we obtained zero
or very insigni"cant gain. In experiments with the real-
world data, the highest gain for one particular learning-
set exceeded 3 times.

In comparative experiments, we used optimal values of
j (for the standard RDA), and a and j (for the scaled
rotation), and the number of the learning iterations
t
015

(for the SLP classi"er) estimated from the test-set
data or analytically for the Gaussian pattern classes.
Therefore, our estimates do not re#ect absolute e$cacy
of the scaled rotation regularization, but, nevertheless,
state that, for some data structures and sizes of the
learning-sets, in principle, the new regularization method
together with usage of SLP in the original and/or the
transformed feature space can be more powerful than the
standard RDA. No doubt, this sample covariance matrix
regularization technique can be used in pattern classi"ca-
tion tasks with di!erent covariance matrices, as well as in
regression.
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