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AbstractÐStructuralization of the covariance matrix reduces the number of

parameters to be estimated from the training data and does not affect an increase

in the generalization error asymptotically as both the number of dimensions and

training sample size grow. A method to benefit from approximately correct

assumptions about the first order tree dependence between components of the

feature vector is proposed. We use a structured estimate of the covariance matrix

to decorrelate and scale the data and to train a single-layer perceptron in the

transformed feature space. We show that training the perceptron can reduce

negative effects of inexact a priori information. Experiments performed with

13 artificial and 10 real world data sets show that the first-order tree-type

dependence model is the most preferable one out of two dozen of the covariance

matrix structures investigated.

Index TermsÐFirst-order tree-type dependence, a priori information,

classification, generalization, sample size, dimensionality.
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1 INTRODUCTION

MORE than 30 years ago, Chow and Liu [2] proposed approxima-
tion of a p-dimensional discrete probability distribution by the
first-order tree-type (FOTT) dependence to reduce the number of
parameters estimated from the data. They assumed that each
component of the feature vector depends directly upon only one
other component. In a vivid example, one could say that each
variable has only one ªbossº component that it depends upon.
Denote p as a dimensionality of a p-variate vector XX �
�x1; x2; . . . ; xp�T to be classified. Then, the probability density
function can be written as a product of pÿ 1 second order
distribution densities:

f�x1; x2; x3; . . . ; xp� � f�x1�f�x2 j xm2
�f�x3 j xm3

� . . . f�xp j xmp
�

0 � mj � p;
�1�

where sequence fm2; . . . ;mpg constitutes a graph of connections (a

permutation of integers 1; 2; . . . ; p) and f�x1jx0� � f�x1� (we

assume that variables x1; x2; . . . ; xp are ranked in a such way that

mj < j, j � 2; 3; . . . ; p). Chow and Liu [2] applied their model to

hand-printed numeral recognition and obtained a significant

improvement for a finite training set size. Prochorskas et al. [15]

tried to predict outcomes of heart attacks and found that the

classifier based on the FOTT dependence model outperformed

other classifiers. In spite of the positive qualities of the FOTT

dependence model, it has remained unnoticed in the pattern

recognition literature. One of the reasons for this is that the

dependency structures between the variables are more compli-

cated in real data sets.
A goal of this paper is to find a way to utilize a priori

information contained in the first-order tree-type dependence

hypothesis when this information is only partially correct. We analyze

an asymptotic behavior of the generalization properties of the

Fisher LDF with a sample covariance matrix (CM), structured by
the FOTT dependence model and show that the usefulness of this
model depends both on the learning set size and deviation of the
true data from the data model. In order to save the constructive
information contained in the FOTT dependence postulation, we
suggest using the structuralized covariance matrix for the
whitening data transformation and training a nonlinear single-
layer perceptron (SLP) in the transformed feature space. We
compare the FOTT model with 20 other methods of CM
structuralization and show that inaccuracies caused by incorrect
postulation of the dependence structure can be reduced in SLP
training.

2 THEORETICAL BACKGROUND

To design the standard Fisher LDF

g�XX� � �XX ÿ 1

2
��x1 � �x2��TSÿ1��x1 ÿ �x2�;

we have to evaluate 2p components of the mean vectors and
p(p + 1)/2 elements of the covariance matrix, which is common for
both pattern classes. From (1), it follows that the FOTT dependence
model requires estimation of only 2pÿ 1 different nonzero
elements in order to define the covariance matrix. Let �Tree be
the FOTT representation of the true covariance matrix, and let us
use estimate �̂Tree instead of conventional sample CM. Then,

gTree�XX� � XX ÿ 1

2
��x1 � �x2�

� �T
�̂ÿ1

Tree��x1 ÿ �x2�: �2�

Sparse symmetric inverse matrix �̂ÿ1
Tree has p nonzero elements

on its diagonal and pÿ 1 nonzero distinct elements outside the
diagonal. The remaining elements are equal to zero. The matrix
�̂ÿ1

Tree can be represented as a product, i.e., �̂ÿ1
Tree � CTC, where

C � ��cij�� and

cij �
�̂ii�1ÿ �̂2

imi
��ÿ1

2 if j � i;
�̂imiimi

�1ÿ �̂2
imi
��ÿ1

2 if j � mi;
0 if j 6� i;mi;

8><>: �3�

where �̂imi
� �̂imi

=
�����������������
�̂ii�̂mimi

p
is the correlation and S � ���̂ij�� [27].

To estimate the graph fm2; . . . ; mpg, Zarudskij [28] suggested
using a stepwise algorithm developed by Kruskal [9] for the
construction of trees with maximum total branch weight. Let
fj�̂12j; j�̂13j; j�̂14j; ; :::; j�̂pÿ1;pjg be the absolute values of �̂ij. Then,
the first step selects the branch with the maximum weight j�̂ijj,
while the lth step �2 � l � pÿ 1� selects another maximum
weighted branch j�̂lsj, which is different from all the branches
selected during the previous steps and does not form a cycle with
them.

Consider GCCM data with means ��1; ��2, and a common CM �.
Since the vector X is Gaussian, the LDF is a Gaussian random
variable with mean values EgTree�XX� � �ÿ1�i��T�ÿ1

Tree��=2 (i = 1, 2)
and variance V gTree�XX� � ��T�ÿ1

Tree��ÿ1
Tree�� (�� � ��1 ÿ ��2 is a differ-

ence between the mean vectors). Then, the asymptotic classifica-
tion error

PTree
1 � �fÿ 1

2
�Treeg; �4�

where �Tree � ��T�ÿ1
Tree��=

���������������������������������
��T�ÿ1

Tree��ÿ1
Tree��

p
is a modified Mahala-

nobis distance and �{a} is a standard Gaussian cumulative

distribution function.
If the assumptions about the FOTT dependence are correct,

the asymptotic behavior of the classifier coincides with the
optimum Bayes rule. Application of approximately correct a
priori information about the dependence structure between the
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feature components (�Tree 6� �) leads to �Tree < � �
��������������
���ÿ1��

p
(a

Mahalanobis distance) and increases the asymptotic error. Hence,

it is not viable to structuralize the CM for very large training sets.
An Example. Let p = 40, variances be

�jj � �9�jÿ 1�=�pÿ 1� � 1�2;
correlations �21 � 0:9, �31 � ÿ0:6, and remaining the correlations in

the graph fm2; . . . ;mpg are equal to zero; ��j � c
����������
�j=p

p �pÿ
j�=�p=2ÿ 1� (the first features are most informative [6]), where c

is determined in order to obtain the Mahalanobis distance � =

3.76Ðthis corresponds to the Bayes error PB � 0:03. Under the

hypothesis that there is an FOTT dependence between x1; x2; x3

(m2 � 1, m3 � 1) from (3), we can calculate �21 � ÿ0:54. Let, in

reality, �23 � ÿ0:22445. Equation (4) shows that �Tree � 2:68 and

PTree
1 � 0:09.

If the sample available for classifier design is finite, the

estimated classification rule parameters are inexact. A double

asymptotic analysis (both the dimensionality p and the training

sample size N � N2 � N1 are increasing without bounds, p=N � c,
c <1) has shown that the expected classification error (general-

ization error) of the standard Fisher LDF can be determined

approximately by the following equation [3], [4], [17], [22], [23]:

EPF
N � � ÿ �

2

1�����������
T�T�

p( )
; �5�

where T� � 1� 2p=��2N�, is a term due to estimation of the means

��1, ��2, and T� � 1� p=�2N ÿ p� arises due to estimation of the

covariance matrix �.
In the case of known covariance matrix, instead of the sample

estimate S in (5) we use � (exact CM) and the term T� vanishes

[16], [17], [3], [4]. Thus, to design the classifier, we need much

fewer training samples. Equation (5) shows that if N is close to p/2,

the standard Fisher rule does not work. One possible strategy to

design the classifier is to ignore all correlations and use only

diagonal elements of S when sample size is small. Then, we have

following LDF:

ĝD�XX� � XX ÿ 1

2
�x1 � �x2� �

� �T
DDÿ1 �x1 ÿ �x2� �

�
Xp
j�1

xj ÿ 1

2
�x1j � �x2j

ÿ �� �
�x1j ÿ �x1j

ÿ �
=�̂jj;

�6�

where D is a diagonal matrix composed from elements �̂ii
(variances) of the matrix S � ���̂ij��.

To obtain a simple and easy to comprehend expression for the

generalization error of the classifier according to DF (6), assume

� � I (identity matrix). For a finite training set size, means �x1, �x2

are Gaussian random vectors: �xi � N���i; I=N� and elements �̂jj are

distributed as �2N ÿ 2�ÿ1�2
2Nÿ2. Expected values E��̂jj�ÿ1 � 2Nÿ2

2Nÿ4 ,

E��̂jj�ÿ2 � �2Nÿ2�2
�2Nÿ4��2Nÿ6� . In a high dimensional case, the distribution

of the discriminant function (6) as a sum of independent random

variables approaches Gaussian distribution with means and

variance

EgD�XX� j XX 2 !i� � �ÿ1�iÿ1 1

2

2N ÿ 2

2N ÿ 4
��T�� � �ÿ1�iÿ1 1

2

2N ÿ 2

2N ÿ 4
�2;

�i � 1; 2�
V gD�XX� j XX 2 !i� �

2N ÿ 2

2N ÿ 4

� �2Xp
j�1

2N ÿ 4

2N ÿ 6
�2
j �

2

N

� �
�2
j

4
� 1� 1

2N

 !
� �

4
j

4

 !
:

Therefore, the expected generalization error of the classifier
according to DF (6) is

EPD
N �

� ÿ �

2
��������������������������������������������������������������������������������������������������������
1� 1

Nÿ3

ÿ �
1� 1

N 1� 2p
�2

ÿ �� p
�2N2

ÿ �� 1
�2

Pp
j�1 �

4
j

1
4�Nÿ3�

q
8><>:

9>=>;: �7�
Ignoring terms containing 1/N and p=N2, (7) asymptotically (as
p!1 and N !1) becomes equivalent to (5) with T� � 1. This
means that the estimation of the variances �̂11; . . . ; �̂pp does not increase
the generalization error asymptotically. In a finite dimensional case,
however, the terms rejected affect the generalization error and
cannot be ignored. Nevertheless, (7) advocates that the influence of
the variance (common for both pattern classes) estimation is less
significant than that of the means (different in both pattern classes)
estimation. This important conclusion was generalized by means
of double asymptotic analysis for a number of other classifier
models [5], [12], [13], [26], [27]. Asymptotically, (5) with T� � 1 is
also valid for the FOTT linear discriminant function [27]: the
estimation of p variances and pÿ 1 correlations does not increase the
generalization error asymptotically. Our analysis shows that (7) with
more terms is more suitable for the FOTT dependence model than
the purely asymptotic expression (5) with T� � 1 in a finite
dimensional case.

Calculations for the Bayes error PB � 0:03 and the asymptotic

error PTree
1 � 0:09 using (7) with T� � 2N=�2N ÿ p� and (7) with

�Tree defined in (4) show that, in small training set size, the

generalization error of the FOTT Fisher LDF is lower that standard

Fisher LDF (e.g., for N � 25, EPF
N � 0:228, and EPTree

N � 0:137). If

N � 36, we have EPF
N � EPTree

N � 0:125. In large learning set cases,

however, the standard Fisher LFD outperforms the FOTT Fisher

LDF (e.g., for N � 100, EPF
N � 0:052, and EPTree

N � 0:103). We see

that the structured covariance matrix is viable for application only

if the training set size is rather small.
If the FOTT model is inaccurate for the real data and the

training sample size is small, other methods for the CM
structuralization might be useful. There exist a number of
possibilities to describe the covariance matrix with a small number
of parameters. One can split the features into blocks and assume
the blocks to be independent. This results in a block-diagonal
representation of the covariance matrix. Another possibility is to
assume the variables x1; x2; . . . ; xp to be realizations of a stationary
random process. The CM will then have the Toeplitz structure
described by only p parameters. Moreover, one can assume that the
process can be described by the rth order autoregression (AR)
model, qth order moving average (MA), pqth order ARMA, circular
models [14], [18], [24], [25], additive noise model (all diagonal
elements of the covariance matrix � are equal to �1 and
nondiagonal ± to �2; �1 > �2 > 0), etc. In all these CM models,
the number of parameters pmodel describing the matrix �model is
substantially reduced. If the assumptions about the structure are
correct, the asymptotic error corresponding to this model
Pmodel
1 � PB. If the assumptions are partially correct, we have
Pmodel
1 � �fÿ�model=2g > PB, the Bayes error. Therefore, in certain

pattern recognition problems, some models with structuralized
CM can outperform the FOTT dependence model.

Consequently, instead of the dilemma of choosing between the
standard Fisher classifier and its FOTT modification, the following
question arises: Which method for CM structuralization do we use in
each particular situation? The answer depends on the particular
pattern recognition problem and on the training set size. In
principle, one could use (5) and (7) to calculate the expected
generalization error and choose an appropriate model in the
GCCM case. In practice, however, three difficulties arise. The first
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difficulty (the smaller one) lies in the fact that the asymptotic
equations (5) and (7) are exact only in high-dimensional case. In
fact, the coefficient T� and (5) contain terms with 1=N and p=N2,
which disappear as p!1 and N !1 [17]. Equation (5) gives
only approximate values if �model is used instead of �. More serious
difficulties are: Parameters of the GCCM model to be used in (5),
(7) are unknown, the GCCM pattern classes do not occur in real
problems.

3 EXPERIMENTS WITH ARTIFICIAL GAUSSIAN DATA

Our goal is to obtain benchmark performance estimates of FOTT
dependence model and validate simulation methodology used
subsequently in the experiments with real data and the single-layer
perceptron classifier. Generalization properties of the Fisher LDF
with FOTT structured CM are compared with standard statistical
linear methods: the Euclidean distance classifier (EDC), the
standard Fisher LDF (if 2N < p, we use a pseudoinversion of
CM), and its modifications with structured sample CM estimates
according to the standard Toeplitz, circular, and the first and
fourth order autoregression models. As a benchmark method for
estimation of the relative efficacy of the CM structuralization, we
use an optimized standard linear regularized discriminant analysis
(RDA), where, in LDF, we use a ridge estimate of the CM, S + �I

[6], [11]. In our experiments, selection of the optimum �opt value is
based on the lowest generalization error PN , calculated for
50 values of � � �0=�1ÿ �0�, where �0 is in the interval �0; 0:98�.
For the artificial data sets, we know ��1, ��2, �. Thus, means of any
sample-based LDF g(X) ªAº with the weights wA

0 ; ww
A will be E

g�XX� � ��A
i � xTwwA (i � 1; 2) and a variance V g�XX� � �wwA�T�ÿ1wwA.

Thus, the generalization error can be calculated analytically:

PN�wA
0 ; ww

A� � 1

2
� ÿ wA

0 � �wwA�T��1����������������������������
�wwA�T�ÿ1wwA

q
8><>:

9>=>;� 1

2
�

wA
0 � �wwA�T��2����������������������������
�wwA�T�ÿ1wwA

q
8><>:

9>=>;
�8�

In the experiments, we used two-category case artificial
40-variate GCCM populations with the FOTT dependence,
Toeplitz, circular (for these data models we selected three sets of
the model's parameters), first and fourth order AR structures (two
models). In addition, we investigated two 40-variate artificial
correlated GCCM data models as Friedman [6] did in analysis of

RDA for the quadratic case (for details see [24], [25]). In all

cases, the Mahalanobis distance � = 3.76 (the Bayes error

PB � 0:03). We concentrated our analysis mainly on a case

when the number of learning examples is small: N = 13, p =

40. To evaluate the effectiveness of structuralization we used a

ratio 
 � PRDA
N =P classifier

N , where PRDA
N and P classifier

N are the general-

ization errors of the optimized standard RDA and a classifier

under investigation, respectively. In RDA, our benchmark method,

we utilized the additional information in order to evaluate �opt.

Thus, the RDA estimates were optimistically biased.
In total, we considered 13 artificial data models and 7 + 1 classi-

fiers. All series of experiments were repeated 25 times with

different randomly chosen learning sets. Results of 7 � 13 series of

the experiments are presented on a horizontal axis of Fig. 1a. The

experiments affirm that proper hypotheses about the data

structure improve the generalization accuracy. For the three FOTT

data sets, correct assumptions reduce the generalization error by

1.1, 1.6, and 1.23 times compared to the optimized RDA, while

improper structuralization methods (Toeplitz, circular, autoregres-

sion) were not successful. A gain of 4.59 times on average in

25 experiments for the AR4 data model indicates that, in principle,

the proper structuralization can be very useful. For the unstructured

Friedman data, however, all structuralization methods investi-

gated were ineffective. In spite of the fact that we utilized additional

information in the RDA design, correct structuralization helped to

outperform the optimized RDA.

4 WHITENING DATA TRANSFORMATION

In solving real world problems we do not know the structure of the

covariance matrix in advance. Usually, our hypotheses would be

inaccurate. Can we save the information contained in approxi-

mately correct assumptions and increase the generalization

accuracy of the classifier? The answer is positive and, for this,

we propose the use of a nonlinear single-layer perceptron. To

design the SLP classifier, we do not need to consider the data

structure and we still can get a good classifier for non-Gaussian

data sets. Statistical hypotheses about the data may be incorpo-

rated into the SLP training process by structuring the sample CM

and using it for a whitening transformation, which decorrelates and

scales the data. The theoretical background of the integrated

approach lies in a recently discovered fact that SLP evolves from a
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(a) artificial data sets, (b) real world data sets. The circles indicate the first-order tree-type dependence model of the CM structuralization.



simple statistical classifier to a more complex ones in the course of
adaptive training [19].

4.1 Single-Layer Perceptron in the Transformed Feature
Space

A single-layer perceptron has p inputs x1; . . . ; xp and one output
o � f�wwTXX � w0�, where f�net� is a nonlinear activation function,
e.g., f�net� � tanh�net�. To find the weights, we have to minimize
a certain loss function. The most popular one is the following sum
of squares:

costl � 1

N1 �N2

X2

i�1

XNi

j�1

tij ÿ f wwTxx
�i�
j � w0

� �� �2
; �9�

where t
�i�
j is a desired output for xx

�i�
j (e.g., t

�1�
j � 1, t

�2�
j � ÿ1), the jth

training vector from !i.
The weights are updated according to standard total gradient

rule wwt�1 � wwt ÿ �@costl=@w, where � is a learning rate. Iterative
training of SLP becomes very slow when the data are almost
singular, i.e., in cases of high dimensionality and a small training
set [10]. The eigenvalues of the sample covariance matrix S are
essentially different and the ratio between the largest �max and the
smallest �min eigenvalues becomes large. Gradient descent training
of the SLP converges when 0 < � < 1=�max [10]. Since the
recommended optimum value of the learning rate is
� < 1=�2�max�, the convergence is extremely slow. This drawback
can be improved by the data rotation and scaling. Let us perform a
singular value decomposition of S : TTST � D, where T is the p� p
eigenvector matrix and D is the p � p diagonal eigenvalue matrix.
Then, S � TDTT . Consequently, the sample covariance matrix Sy
of linearly transformed training vectors yy � Dÿ1=2TT xx is the
identity matrix: Dÿ1=2TTSTDÿ1=2 � I. Similarly, �y1 � Dÿ1=2TTx1,
�y2 � Dÿ1=2TTx2. This is the so-called whitening transformation [7].
Let us train the SLP in the new space y. If the center of the training
data, 1=2��x1 � �x2�, is moved to zero, the total gradient training is
applied, ªsymmetricalº targets t�2� � ÿt�1� (for tanh activation
function) are used, and weights are initialized with zero values,
then, after the first iteration, we obtain a classifier equivalent to the
EDC, which is the simplest statistical classifier [19]:

g�t�1��YY � � YY ÿ 1=2 �y1 � �y2� �� �T �y1 ÿ �y2� �� � constant: �10�
Utilization of representations Sÿ1 � TDÿ1TT , �yi � Dÿ1=2TT�xi,
and YY � Dÿ1=2TTXX leads to:

gt�1��YY � � �XX ÿ 1=2��x1 � �x2��TTDÿ1=2Dÿ1=2TT ��x1 ÿ �x2��k
� �YY ÿ 1=2��y1 � �y2��TSÿ1��y1 ÿ �y2��k:

�11�

Equation (11) shows that SLP, trained one iteration in the
transformed feature space y, is equivalent to the standard Fisher
LDF in the original feature space (OFS) x. If we transform the data
using matrix GRDA � �D� �I�ÿ1=2TT , yy � GRDAx, then, after the
first iteration, we obtain a classifier which is equivalent to the
standard RDA in OFS. Let us perform the data transformation
using matrix GTree � D

ÿ1=2
Tree TT

Tree : yy � GTreex, where D
ÿ1=2
Tree and

TTree are the p � p diagonal eigenvalue and the p � p eigenvector
matrices of the FOTT structured sample CM �̂Tree. After the first
iteration, the SLP performs as the EDC in the transformed feature
space and as the constrained Fisher LDF in the original feature
space. If the correct data transformation is applied, the general-
ization accuracy of the SLP increases. This is explained by the fact
that the EDC, which is obtained at the very beginning of the SLP
training, is the optimum classifier for spherical populations.
Moreover, EDC has good properties for small learning sets, its
generalization error is determined by (5) with T� � 1. On the other
hand, for the spherical Gaussian data, the EDC serves as a very
good initialization of SLP. It was shown that a successful

initialization can be very advantageous in reducing the general-
ization error [21]. The necessary condition to use good initial
values is to stop training optimally. Moreover, equalized eigenva-
lues of the covariance matrix provide favorable conditions for fast
training.

During further training, the SLP produces the following
discriminant function:

g�t��YY � � �YY ÿ 1=2��y1 � �y2��T ��1I� SyTree�ÿ1��y1 ÿ �y2��kt
� �XX ÿ 1=2��x1 � �x2��T ��1�̂Tree � S�ÿ1��x1 ÿ �x2�kt;

�12�

where t is a number of training iterations, kt is a scalar constant,

�1 � 2
�tÿ1��

N
Nÿ1 , and SyTree � D

ÿ1=2
Tree TT

TreeS TTreeD
ÿ1=2
Tree .

Equation (12) shows that, after t iterations, we have the Fisher
LDF with regularized and structured sample CM. With an increase
in the number of iterations, the effect of structuralization of the
covariance matrix vanishes. The resulting decision rule approaches
the standard Fisher LDF. Thus, training the SLP can diminish
negative influence of inaccurate assumptions.

In SLP training, the weights are increasing continuously and the
activation function f(net) starts acting in a nonlinear region. We
obtain a robust classification rule that is insensitive to outliers.
Later, we approach a minimum empirical error classifier and, at
the very end, even a maximum margin classifier [19]. The last three
classifiers can outperform the standard parametric statistical rules
if the data are non-Gaussian. From the theoretical considerations
above, it follows that data transformation, together with an
optimally stopped SLP, may lead to a significant improvement of
the generalization properties compared to the RDA and con-
strained Fisher LDF when the data are non-Gaussian, the
covariance matrices of the populations are distinct, and/or the
structure of CM is postulated incorrectly.

4.2 Experiments with Artificial Gaussian Data

In the experiments, we utilized the same artificial data as described
in Section 3. We moved the learning data center to zero, initialized
SLP with the zero weight vector, used a sigmoid activation
function f�net� � 1=�1� eÿnet�, and trained the SLP according to
the standard total gradient delta learning rule with targets 0 and 1.
In order to approach the maximum margin classifier quickly, we
increased the learning step � exponentially with each iteration
number t [19]: � � 0:2� 1:03t, where tmax � 500. The SLP was
trained in the original feature space and in the transformed feature
space yy � D

ÿ1=2
modelT

T
modelxx, where Dmodel and TT

model are the eigenva-
lue and eigenvector matrices of the structured sample CM,
respectively. The optimum stopping moment topt was determined
from the estimates of the generalization error PN�w0; ww� calculated
analytically (8). As in the RDA, our benchmark method, additional
information used to evaluate topt makes the SLP performance
estimates optimistically biased. Thus, the effect of the bias becomes
almost irrelevant and we obtain more or less fair comparison of
both methods, the RDA and SLP.

A scatter diagram in Fig. 1 shows an efficiency of the whitening
transformation and the subsequent use of the optimally stopped
SLP if correct models are applied, e.g., the FOTT structuralization
resulted in a gain 
Tree � 1:23 for the Gaussian tree-type data Tr3.
For the integrated approach, the gain is higher: 
Tree&SLP � 1:54.
The approach leads to decreased generalization, even if the
assumptions about the CM structure are inexact. The Friedman
data do not have any of the CM structures considered and, here, no
gain was achieved. The experimental results confirm the theore-
tical presumption that the efficacy of the optimally stopped SLP in
the original feature space is almost the same as that of the optimum
RDA. Higher values of the generalization error of the SLP are
typically associated with these few cases when 500 iterations are
not sufficient for training (large eigenvalues! see Section 4.1).
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5 EXPERIMENTS WITH REAL DATA SETS

We have performed extensive simulation experiments with 10 real

data sets in order to study the usefulness of the first-order tree-

type dependence model applied in the Fisher LDF design and the

SLP training. The real world pattern classification problems have

not been selected purposely to fit the structuralization assumptions

considered. Details concerning the data sets can be found in [20],

[25]. We considered the conventional FOTT dependence model

and its block-diagonal (BD) representation, where the components

of the feature vector are split into separate independent blocks.

All features inside one block are assumed to be FOTT

dependent. The performance of the Fisher LDF with the FOTT

structured sample CM is compared with the following
classifiers: the EDC, the standard Fisher LDF, and 20

constrained Fisher LDF, designed by applying 20 structuraliza-
tion models (general Toeplitz, circular, first and fourth order

AR, first order and second order moving average, first (1, 1)
order and second (2, 2) order ARMA, additive noise models in

conventional and block-diagonal (BD) representations), BD and
multivariate Markov models (see, e.g., [14], [18], [24], [25]).

Experiments were repeated 25 times. In the majority of the
experiments, the training set constitutes a small part of a ªgeneral

population.º The learning set size was small compared to the
dimensionality. In order to compare relative efficacy of different

approaches, we adopted a point of view that each data set represents

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 02, FEBRUARY 2001 237

TABLE 1
Mean Generalization Error EPRDA

N of the Standard Linear RDA and the Relative Efficacy 
 � PRDA
N =P classifier

N for the EDC,
the Standard and Constrained Fisher LDF and SLP, Trained Optimally in the Original and Transformed Feature Space

CM is structuralized by the first-order tree-type dependence model and the most suitable other model.

TABLE 2
Mean Generalization Error EPRDA

N of the Standard Linear RDA and the Relative Efficacy 
 � PRDA
N =P classifier

N for the
Standard and Constrained Fisher LDF and SLP, Trained Optimally in the Original and Transformed Feature Space

CM is structured by the block-diagonal model and block-diagonal model with blocks constrained by the first-order tree-type dependence.



a general population. This approach is frequently utilized in the
statistical analysis. The optimal parameters, �opt and topt, for the
RDA and SLP were found from the generalization error estimates
calculated on the entire data.

Results with CM structuralization are presented in Table 1 and
Table 2 (lefthand blocks of the columns) and Fig. 1b (horizontal
axis). The highest average gain achieved is 
LDA&BD � 1:31 in the
classification of 66-variant Lung noise data (N = 33), using the
6 � 11 block-diagonal representation of CM. However, the
covariance matrix structuralization leads to a gain only in five
series of the experiments out of 211 series performed. We
emphasize that the efficiency estimates 
 are pessimistic since
additional information is utilized to find optimum � for the RDA,
our benchmark method. Nevertheless, the results show that the
assumptions about the structure of the CM, equality of CM of
different pattern classes, as well as about the normality of the
distributions, have not been retained precisely.

In Section 4.1, we presented arguments that data transforma-
tions and optimally stopped SLP can be especially useful if
hypotheses about the data structure are not exact. Experiments
with real world problems confirm this theory. We obtain a
noticeable increase in the efficacy of the CM structuralization by
a joint use of the data transformation and SLP. The righthand
blocks in Table 1 and Table 2 contain the gain parameter 
 for the
SLP, trained optimally in the original and transformed feature
space. Maximum 
 values are presented in bold.

In Table 1, we denoted: G;Gcompet-transformation matrices of
the conventional sample CM and the most suitable competing
model, respectively, and, in Table 2, GBD;GBD&Tree-transformation

matrices of the block-diagonal model and the first-order tree-type
dependence model in block-diagonal representation, respectively.
To reveal the gain obtained from the assumptions about the FOTT
dependence structure, we included into Table 1 the maximum
efficacy, 
compet&SLP , achieved using the most suitable competing
covariance matrix model out of 20 investigated ones.

The highest average gain, 
BD&Tree&SLP � 2:51 (the mean in
25 experiments), is obtained in classifying the 96-variate Phonetic
data (learning set size N = 32) and using the 4 � 24 block-diagonal
representation of CM with the FOTT structuralization. In general,
the first-order tree-type dependence model improves the classifi-
cation accuracy of SLP in 14 cases out of 20 investigated; in eight
cases, it is found to be the best model among two dozen of the CM
structure models considered. The effectiveness of the structurali-
zation is illustrated by a bivariate distribution of the gain
parameters 
 � PRDA

N =P classifier
N , which are evaluated in the experi-

ments with 10 different data sets, two learning-set sizes for each
type of the data, and 22 matrix structuralization models (Fig. 1b).
In this figure, 
model&Fisher corresponds to the efficacy of the
structuralization in the Fisher LDF design and 
model&SLP shows the
efficacy of the methodology applied in the SLP training procedure.
The major part of the points (
model&Fisher, 
model&SLP ) is situated in
the lefthand upper part of the graph. It means, that the additional
use of SLP helps to ªameliorateº the inexact hypotheses about the
data structure and improves generalization accuracy almost in all
experiments. The simulation studies indicate that the FOTT
dependence model may be adequate for many types of real data.
The use of the FOTT transformations and the SLP classifier
introduces significant changes in the perception of this CM
approximation method, whose usefulness has so far been greatly
undermined.

6 CONCLUDING REMARKS

In most real problems, the assumptions about the FOTT
dependence structure, CM common for both populations, and
the Gaussian distributions are violated. Inexact assumptions

decrease the generalization accuracy. We suggest integrating the

positive qualities of the statistical and neural methods and

rehabilitating the FOTT dependence model. Instead of using

statistical methods and multivariate models of the CM (the FOTT

dependence and others) to design the statistical classifier directly,

we suggest application of these methods to perform the data

whitening and then to train the nonlinear SLP in the transformed

feature space. This modus operandi helps retain the information

contained in approximately correct assumptions about the struc-

ture of the covariance matrix and improves the generalization

properties. The following three main keys are the basis of success:

1. The good initial weighs of SLP result in decrease of the
generalization error;

2. During adaptive training, SLP performs as seven statistical
classifiers of increased complexity; the last ones are
appropriate to classify non-Gaussian data;

3. The use of correct or even approximately correct statistical
models for data whitening results in good initial weights of
SLP and reduces the size of the required training set.

A necessary condition to save a priori information is to stop the

SLP training in time. The first hints that one should decorrelate the

inputs were from visual cortex investigators in biological systems

[1]. In order to improve convergence properties of the gradient

descent algorithm, Halkaaer and Winter [8] suggested transform-

ing the input data by removing the mean and decreasing

correlations across the input variables. In our approach, we

decorrelate and scale the data in order to reduce the generalization

error. Among unsolved problems, we will mention a best split of

the design set into training and the validation sets, the accuracy

problems, a special generation of the validation set for selection the

best structuralization model, the optimal parameters, �opt and topt,

for the RDA and SLP.
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