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Abstract—We consider the trainable fusion rule design problem when the expert

classifiers provide crisp outputs and the behavior space knowledge method is used

to fuse local experts’ decisions. If the training set is utilized to design both the

experts and the fusion rule, the experts’ outputs become too self-assured. In small

sample situations, “optimistically biased” experts’ outputs bluffs the fusion rule

designer. If the experts differ in complexity and in classification performance, then

the experts’ boasting effect and can severely degrade the performance of a multiple

classification system. Theoretically-based and experimental procedures are

suggested to reduce the experts’ boasting effect.

Index Terms—Fusion rule, expert classifiers, generalization error, resubstitution

error, complexity.
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1 INTRODUCTION

MULTIPLE classifier systems (MCS) became a popular approach for
designing complex pattern recognition systems [1], [2], [3], [4]. In
this approach, initially a number of “simple” expert (base)
classifiers categorize unknown pattern vectors. A fusion rule
aggregates the outputs of the first-level experts and makes a final
decision. Like feature extraction and feature selection, MCS is an
approach designed to utilize additional informal designer’s
information [5], [6]. Splitting the decision-making procedure into
two stages, by designing separately the experts and the fusion rule,
changes training set size/complexity relations.

A great deal of research in the pattern recognition community

focused on fusion rules [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14]. Fixed fusion rules (majority voting, sum, product,

etc.) are very popular. Such rules are obviously based on quite

strong assumptions, such as comparable performances of all

members in the MCS, statistical independence between solutions

of the experts, etc., [2], [3], [7]. Fusion of the experts’ outputs can be

regarded as a problem of statistical pattern recognition. Linear

weighted voting, the naive Bayes classifiers, the kernel function

approach, potential functions, the behavior-knowledge space

method, decision trees, and multilayer perceptrons are among

the most popular techniques used for experts fusion [4], [5], [6], [7],

[8], [9], [10], [11]. Special approaches such as bagging, boosting and

arcing classifiers, mixture of experts, stacked generalization have

been suggested [1], [12], [13], [14], [15], [16]. In many practical

problems, simple, fixed, nontrainable rules compete or even

outperform trainable ones [17], [18]. It means that certain

difficulties arise in finite sample size situations. Sample size effects

can be divided into three types:

1. Generalization errors of the expert classifiers increase due
to imperfect training.

2. Generalization errors of the fusion rule increase due to
imperfect training.

3. If the training set is used twice, to train the experts and the
combiner, the fusion rule designer is being bluffed since
she/he utilizes biased resubstitution error estimates of
quality of each single expert.

The first effect necessitates the utilization of simple base
classifiers as possible. The second effect requires that one has to
adapt the complexity of the fusion rule to the sample size: In the
small sample case, one needs to use only simple fusion rules. Only
for large sample sizes should one work with complex combiners.
The third effect requires that the fusion rule designer has to
distrust experts’ “self-evaluations” if the expert classifiers are
complex and training set sizes are too small [3], [11], [19]. This
paper deals with the third problem that was almost unconsidered
in the literature.

In [16], leaving-one-out estimates were used to design the
combiner. In [11], Euclidean distance and standard linear Fisher
classifiers were utilized as experts in a linearly weighted sum type
of fusion. To improve linear fusion rule, correction terms to
evaluate the experts’ boasting were derived. These corrections
helped to improve the accuracy of MCS, however, the gain in
classification error reduction was not appreciable. The objective of
the present paper is to consider the much more complex behavior-
knowledge space (BKS) fusion method when linear Fisher
classifiers are used as experts. The BKS method is nonlinear and,
if sample size/complexity relations are satisfied, it can give
acceptable results. Moreover, a pruned BKS method makes up a
decision tree classifier that also can be used as fusion rule. In
contrast to the correction terms derived in [11], standard formulae
to evaluate bias of the resubstitution error estimate (see e.g.,
Section 6.3.1.2 in [20]) are used and adapted to case where
nonlinear method is used for fusion. It enables a better under-
standing of the problem of combining classifiers, especially when
the base classifiers are overtrained. It gives two useful procedures for
minimizing the undesired effects when this is the case.

2 THE MULTINOMIAL CLASSIFIER AS A FUSION RULE

If the experts provide crisp outputs (class labels), then, as the
sample size increases, the asymptotically optimal statistical
decision rule is provided by the multinomial classifier [20], [21]
usually referred to by MCS proponents as the BKS method [21],
[22]. In the pattern recognition literature, the use of the BKS
method as the fusion rule was found very promising, but seriously
limited when the training data set size was small [8], [23].

Consider K pattern classes and L expert classifiers. Denote the
decision made by jth expert by ej. Suppose ej can take one of the
labels f0; 1; . . . ; K � 1g. Thus, for the design of the fusion rule, we
have a discrete-valued vectorEE ¼ ðe1; e2; . . . ; eLÞT . The total number
of possible combinations of L outputs (states) e1; e2; . . . ; eL is
m ¼ KL. Each vector EE can assume only one state, sr, from the m
possible ones, sl; s2; . . . ; sm�1; sm. In a statistical approach, it is
supposed that values s1; . . . ; sm follow multinomial distribution.
The conditional distribution of the ith class vectorEE, taking one ofm
“states” is characterized by m probabilities

P
ðiÞ
1 ; P

ðiÞ
2 ; . . . ; P

ðiÞ
m�1; P

ðiÞ
m ; with

Xm
r¼1

P ðiÞ
r ¼ 1; ði ¼ 1; . . . ;KÞ:

Let Pi be a prior probability of the ith pattern class, �i. Then, Bayes
rule should allocate vector EE, falling into the rth state, according to
maximum of the products

P1P
ð1Þ
r ; P2P

ð2Þ
r ; . . . ; PKP

ðKÞ
r : ð1Þ

Touse theallocation rule,wehave toknowK � ðm� 1Þprobabilities
P

ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P

ðKÞ
m�1 and the class priors P1; P2; . . . ; PK�1. If the fusion

rule makes its prediction based only on the class labels e1; e2; . . . ; eL
supplied by the expert classifiers and if all probabilities in (1) are

known, it is the optimal classifier. No other fusion rule can perform

better. It is worth noting that the multinomial classifier based fusion

rule will fall against an oracle, an ideal fusion rule. The oracle is a

hypothetical rule. It makes the correct classification if at least one

expert is exact. It makes an error, however, if all experts classify
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vectorxx incorrectly. In comparisonwith themultinomial fusion rule,

the oracle utilizes an additional information (vector xx).
In practice, the K �m probabilities P

ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P ðKÞ

m are

unknown and must be estimated from the data. One can use the

maximum likelihood (ML) estimates (sample frequencies)

P̂P ðiÞ
r ¼ nðiÞ

r =Ni; ð2Þ

where Ni is a priori fixed number of training vectors from the ith
pattern class and, among those, nðiÞ

r is a number of vectors falling
into the state sr.

In this case, we have a sample-based multinomial classifier

(BKS method). We will use the two names interchangeably. If the

training set is used twice, to train the experts and the combiner, the

ML estimates (2) are optimistically biased. In order to better

understand the problem of combining classifiers, decompose the

biased ML estimate ~̂
PP̂PP

ðiÞ
r into an unbiased part ^̂PP̂PP

ðiÞ
r (it would be the

ML estimate if an independent set would be used to train the fusion

rule) and the expert’s bias �ir, i.e.,
~̂
PP̂PP

ðiÞ
r ¼ ^̂

PP̂PP
ðiÞ
r þ�ir. If inaccurate

estimates ~̂
PP̂PP

ð1Þ
r and ~̂

PP̂PP
ð2Þ
r are used, a generalization error occurs

EPBKS
gen ¼

Xm
r¼1

Prob P1
~̂
PP̂PP

ð1Þ
r ¼ P2

~̂
PP̂PP

ð2Þ
r

n o
ðP1P

ð1Þ
r þ P2P

ð2Þ
r Þ=2

þ
Xm
j¼1

Prob P1
~̂
PP̂PP

ð1Þ
r < P2

~̂
PP̂PP

ð2Þ
r

n o
P1P

ð1Þ
r

þ
Xm
j¼1

Prob P1
~̂
PP̂PP

ð1Þ
r > P2

~̂
PP̂PP

ð2Þ
r

n o
P2P

ð2Þ
r :

ð3Þ

The above equation makes clear that, in order to calculate general-

ization error, one has to know entire set of 2m� 2 probabilities,

P
ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P

ð2Þ
m�1.

An example. In order to show the effect of the expert boasting

bias on the generalization error, consider MCS with L statistically

independent experts performing binary classification ðK ¼ 2Þ.
After receiving vector xx, let the experts produce binary (0 or 1)

outputs,e1; e2; . . . ; eL. We assumed that the outputs ejðj ¼ 1; . . . ; LÞ
are independent binomial variables. Therefore, conditional prob-

ability P
ðiÞ
j of the ith class, rth cell ð0 < r ¼ 1þ e1 þ 2e2 þ 22e3 þ

. . .þ 2L�1eL � mÞ can be expressed as the product

P ðiÞ
r ¼

YL
j¼1

ðPijÞej ð1� PijÞ1�ej ; ð4Þ

wherePij is the probability that the jth expert assigned the ith class
vector to the first class. P2j and 1� P1j are conditional probabilities
of misclassification of the first and second sorts.

Consider artificial Gaussian data model A, with 2,600 features

divided into seven blocks (one block for each base classifier). Let the

blocks be mutually independent and let the pattern classes share

common covariance matrix. Assume that individual asymptotic

errors of each of five blocks be PF
1 ¼ 0:3535 (Mahalanobis distances

� ¼ 0:752, for an introduction to statistical pattern recognition see

[24], [25]), number of features in each of them, n ¼ 500; asymptotic

errors of the last two blocks PF
1 ¼ 0:1172ð� ¼ 2:378Þ, n ¼ 50.

In finite training set situations, generalization errors of the expert

classifiers increase due to imperfect training. We have �NN ¼ 500

training vectors of each class. Exploitation of formulae for standard

linear Fisher classifier (Section 6.3.1.2 in [20], see also the equations at

the beginning of Section 3) gives EPF
gen ¼ 0:4503 (for first five

experts), EPF
gen ¼ 0:1274 (for last two experts). Thus, for data model

A one can use P2j ¼ 1� P1j ¼ 0:4503ðj ¼ 1; 2; 3; 4; 5Þ; P2j ¼ 1�
P1j ¼ 0:1274ðj ¼ 6; 7Þ and (4) to calculate true cells’ probabilities

P
ð1Þ
1 ; . . . ; P

ð2Þ
128Þ. If the fusion rule designer would know unbiased

probabilities of incorrect classification of each single expert (0.4503

and 0.1274), she/he could design an ideal fusion rule with

an asymptotic classification error PBKS
1 ¼ 1

2

Pm
r¼1 minfP ð1Þ

r ; P ð2Þ
r g ¼

0:1068 (we assumedP2 ¼ P1 ¼ 1
2Þ. If the designer utilizes the training

set twice, instead of generalization error estimates, EPF
gen, she/he

has to use resubstitution estimates, P̂PF
R . When the training set size

is �NN ¼ 500, exploitation of formulae presented in the literature

(Section 6.3.1.2 in [20], see also the equations at the very beginning of

Section 3) gives expected resubstitution errors EP̂PF
R ¼ 0:1287 (for

first five experts) and EP̂PF
R ¼ 0:1072 (for last two experts). Suppose

that the fusion rule designer utilizes the biased probabilities, EP̂PF
R ,

and (4) to evaluate cell probabilities and to build BKS fusion rule.

Calculation according to (4) and (3) gives the generalization error of

this fusion rule, EPBKS
gen ¼ 0:2028. Here, for calculations, we used

theoretically calculated (nonrandom) estimates of the cell probabil-

ities. Therefore, in (3), the probabilities ProbfP1
^̂
PP̂PP

ð1Þ
r > ¼ < P2

^̂
PP̂PP

ð2Þ
r g

were equal either to 0, 12 , or 1. We see biased estimates lead to error

almost twice larger as unbiased ones (PBKS
1 ¼ 0:1068Þ.

Suppose now that 500þ 500 additional independent learning

vectors are used to obtain cell estimates ^̂
PP̂PP

ðiÞ
r ðr ¼ 1; . . . ; 128; i ¼ 1; 2Þ.

Estimates ^̂
PP̂PP

ðiÞ
r are binomial random variables. Therefore, to

evaluate the generalization error, one can use (3) with

P P1
^̂
PP̂PP

ð1Þ
r < P2

^̂
PP̂PP

ð2Þ
r

n o
P1P

ð1Þ
r ¼

X�NN�1

l¼0

X�NN
v¼jþ1

P1
�NN !

l!ð �NN � lÞ!

�
P ð1Þ
r

�lþ1

�
1� P ð1Þ

r

� �NN�l �NN !

v!ð �NN � vÞ!

�
P ð2Þ
r

�vþ1�
1� P ð2Þ

r

� �NN�v

:

Other terms in (3) can be calculated in a similar way (see also (3.46)

in [20]). For �NN ¼ 500, we calculate PBKS
gen ¼ 0:1201. It is notably closer

to the asymptotic error, PBKS
1 ¼ 0:1068, as the classification error of

the fusion rule is based on nonrandom, however, biased expert

estimates (in the later case, we found thatEPBKS
gen ¼ 0:2028). It allows

us to predict that the second utilization of the learning set (to build
BKS fusion rule) increased the generalization error by 8 percent.

3 FIGHTING THE BIAS IN ERROR RATE ESTIMATION

Correction term. When we train the expert classifiers and use the

training set to evaluate the cells’ probabilities P
ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P ðKÞ

m ,
we deal with biased (apparent) error estimates. Consider a

standard two-category example where the pattern classes are

Gaussian and share a common covariance matrix. The expectation

of the resubstitution error estimate of the linear Fisher classifier is
[20] EP̂PF

R ¼ �f� 1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TMT�

p
g, where TM ¼ 1þ 2n

�2 �NN
; T� ¼ 1þ n

2 �NN�n
, n

is the input dimensionality (in an MCS design, n can be different

for each expert), and � is the Mahalanobis distance. The expected

value of the generalization error is EPF
gen ¼ �f� 1

2 �=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
TMT�

p
g. For a

multivariate Gaussian data model, these equations can be used to
calculate expectations of resubstitution and generalization errors.

In the example considered in the previous section, we had the

MCS with seven expert classifiers. The asymptotic errors of the first
five experts were PF

1 ¼ 0:3535. For training set �NN ¼ 500 vectors

from each of the classes and dimensionality n ¼ 500 for the first

five experts, we calculated resubstitution error EP̂PF
R ¼ 0:1287 and

generalization error EPF
gen ¼ 0:4503. For the other two experts with

asymptotic error PF
1 ¼ 0:1172 and input feature dimensionality

n ¼ 500, we found EP̂PF
R ¼ 0:1072 and EPF

gen ¼ 0:1274.
In order to reduce the effect of the expert’s boasting, the fusion

rule designer ought to use unbiased generalization error estimates.
In the two-category case, for the linear Fisher classifier, the
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following almost unbiased estimate of generalization error was
recommended ([20], ((6.30)):

P̂PF�
R ¼ P̂PF

R þ EPF
gen � EP̂PF

R

� �

¼ P̂PF
R þ � � �̂�

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
TMT�

p
( )

� � � �̂�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TMT�

p( ) !
;

ð5Þ

where �̂� is the sample estimate of distance �. It can be obtained

from resubstitution classification error estimate by means of

interpolation the equation P̂P
F

R ¼ �f� �̂�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TMT�

p
g.

Let L statistically independent experts provide binary (0 or 1)

crisp outputs, e1; e2; . . . ; eL. Then, according to (4), the conditional

probability P ðiÞ
r of the rth cell is a function of the probabilities of

incorrect classification, P2j and 1� P1j. Replacing P2j and 1� P1j in

(4) by the generalization error estimates of each expert, P̂PF�
Rj , we obtain

an “unbiased” estimate of a conditional generalization error in the

rth cell, P̂P
ðiÞ
Gr . ReplacingP2j and 1� P1j in (4) by the resubstitution error

estimates P̂PF
Rj ðj ¼ 1; 2; . . . ; LÞ, we construct an almost “unbiased”

estimate of conditional resubstitution error in the rth cell, P̂P
ðiÞ
Rr (for the

sake of simplicity, we assume P2r ¼ 1� P1r). The modified term,

�̂�ir ¼ P̂P
ðiÞ
Gr � P̂P

ðiÞ
Rr , can be used to reduce the bias of the rth cell’s

probability estimate:

P̂P
ðiÞ
r unbiased ¼ P̂P ðiÞ

r þ P̂P
ðiÞ
Gr � P̂P

ðiÞ
Rr

� �
: ð6Þ

Equation (6) is valid if the experts’ solutions are mutually
statistically independent. Moreover, the data have to be Gaussian,
with a pooled two-pattern class covariance matrix. In other cases
(non-Gaussian data, another type of expert classification rule,
many-pattern classes, etc.), correction term �̂�ir ¼ P̂P

ðiÞ
Gr � P̂P

ðiÞ
Rr is not

based theoretically any more.
Noise injection. One of the possible strategies to reduce the

resubstitution error bias, in the general case, is to create a pseudo-
validation set by means of a noise injection. In the noise injection
technique, we form a pseudovalidation set by adding many (say,
ninn) randomly generated zeromean vectors to each training pattern
vector. Spherical Gaussian (white) noise, however, can distort the
intrinsic dimensionality of the data. To reduce data distortion,
colored noise injection [20], [26], [27] can be used. In k-nearest
neighbor-directed noise injection, for each single training vector, xxis,
one finds its k nearest neighbors, xxis1; xxis1; . . . ; xxisk, from the same
pattern class. Then, one adds random Gaussian Nð0; �2nÞ noise ninn
times along the k lines connecting xxis and xxis1; xxis1; . . . ; xxisk.

Three parameters have to be defined to realize a noise injection
procedure: k, the number of neighbors, ninn, the number of new,
artificial vectors generated around vector xxis, and �2

n, the noise
variance. In our experiments, we used: k ¼ 2 (two nearest
neighbors), ninn ¼ 10; �2n ¼ 1. For the MCS fusion rule design, we
classify vectors of artificial pseudovalidation set by L expert
classifiers and use the classification results to estimate unknown
probabilities, P

ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P

ðKÞ
m�1. Just as in kernel discriminant

analysis, the noise smoothes the sample estimates of the cell probabilities.
In fact, noise injection introduces additional information, by filling the
space between nearest vectors of one pattern class with vectors of
the same category. Similarly to smoothing in the kernel discrimi-
nant analysis, a noise injection technique is effective if the intrinsic
dimensionality of the data is low [20].

4 SIMULATION EXPERIMENTS

Three artificial multivariate Gaussian data models sharing a
common covariance matrix for two-pattern classes were used to
verify the efficacy of our theoretical estimates. Strictly speaking,
correction term becomes exact if the sample size is increasing
without bound (the dimensionality can increase too). Then,
variances of conditional classification error are small ([20],

Section 3.4.4). Therefore, we intentionally set the input dimen-
sionality high and the sample size large in order to have correct
estimates of classification errors. Large differences between
performances and dimensionalities of different experts were
chosen to reveal the effectiveness of the BKS method.

The data model A consists of 2,600 independent features divided
into seven blocs: 500, 500, 500, 500, 500, 50, 50 features. All
2,600 features have unit variance, all features in one block have the
samemean value, selected to have the Bayes error andMahalanobis
distances defined at the end of Section 2. In data models B and C,
we have 1,000 features. The first five experts use 500 overlapping
features, the last two experts use 50 features each. In model A, the
experts are statistically independent; in models B and C, they are
dependent. The difference between models B and C is the intrinsic
dimensionality of the data: In modelB, all 1,000 variances are equal
to 1. In model C, the variances of 11 informative features are unity;
standard deviations of the remaining features were set to 0.01. The
experts’ complexity and the asymptotic errors are the same in all
three data models: Five experts (Fisher classifiers) operate in 500-
variable feature space and are rather “weak.” The last two experts
work in 50-variable space and are considerably more powerful. In
artificial data models, B and C, we had the same correlations
between the experts’ outputs. For each model, 10 independent
experiments with training sets of size N ¼ 500þ 500 were
performed.

A real world, two-category satellite data was composed of
15,787 eight-dimensional vectors. The entire training data,
4; 384þ 4; 242 vectors, was split randomly into five training sets
(876þ 848 vectors each). Experiments with each training set
were performed two times starting form different initial weights
to train multilayer perceptrons (MLP) with four hidden units
used as expert classifiers; 10 independent experiments in total.
The perceptrons were trained with 35 training epochs by the
Levenberg-Marquardt algorithm. In each of the first 10 inde-
pendent experiments, 13 MLPs were trained starting from
different random initial weights. Seven “best” experts were
selected. The experts’ selection was performed according to
classification error estimates obtained from the artificial pseudo-
validation set. We refer to these experts as “generic” (non-
specific) ones. The BKS fusion rules were trained using all 876þ
848 vectors in the particular learning set. The test set comprised
3; 555þ 3; 606 independent vectors.

In the second part of the study (an additional 10 independent
experiments), we used five specialized (with four hidden units) and
two genericMLPs. The specialized experts were trained on different
training subsets. Five nonintersecting subsets were formed of 876þ
848 vectors by means of cluster analysis. Therefore, specialized
MLPs were experts in different regions of input feature space.

Mean values and standard deviations of generalization error
obtained in 10 experiments are presented in Table 1. Abbreviations:
BKStand is the standard and BKSIdeal is the ideal BKS fusion rule
(test set vectors were used to evaluate the cells’ probabilities
P

ð1Þ
1 ; . . . ; P

ð2Þ
m�1). BKSNoise denotes the BKS rule when the pseudo-

validation set was utilized to evaluate the cells’ probabilities.
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Means of Generalization Errors and Their Standard Deviations

of MCS in the Experiments with Three Sets of Artificial
and a Real-World Satellite Data



MajorVot stands for fixed majority voting fusion rule. BKSModif
denotes the modified BKS rule, when the ML sample-estimated cell
probabilities (2) were corrected by (4), (5), (6), and the Fisher
classifiers were used as experts. Best Valid designates that the best
expert was selected from the pseudovalidation set error estimates.

Experiments with the Gaussian data set A confirm the
theoretical estimates presented at the end of Section 2. The increase
in classification error due to the expert’s bias is much greater than the
increase due to the imperfectly trained fusion rule. The mean
experimental generalization error, 0.223 (for joint expert bias and
imperfect fusion rule training), is only a little bit greater than the
theoretically calculated classification error, 0.2028, found from (3)
for the case when only the experts’ boastings were taken into
account. For data model A, the BKSModif rule completely
compensates the experts’ boasting effect: The experiments give
the same ratio of the generalization error of BKSModif to the
asymptotic error, 0:111=0:099 ¼ 1:121, as the theoretical evaluation.
In the latter case, we used ratio 0:1201=0:1068 ¼ 1:1245, calculated
above assuming that additional learning set was used to train the
fusion rule.

For data sets B and C, for which the experts’ outputs were

statistically dependent, the analytical boasting correction

BKSModif was also highly effective. The 10-fold noise injection

BKSNoise was effective only in experiments with data set C,

which has low intrinsic dimensionality. If the intrinsic dimensionality

is high, 5; 000þ 5; 000 new artificial vectors are insufficient to fill

the 500-dimensional feature space and to smooth the sample

estimates of the cell probabilities P
ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P

ð2Þ
m�1. For data setC,

method BKSNoise was as effective as the analytically-based

corrections BKSModif and outperformed both the weighted voting

rule and the best single expert (12.74 percent of errors, on average).
In the experiments with the satellite data, and MLPs as expert

classifiers, we could not use the theoretically corrections derived for
linear Fisher classifier and multivariate Gaussian data model. Table
1 shows that the BKSNoise procedure was effective: it helped to
reduce the generalization error and outperformed other fusion
methods. In addition, for a single experiment with specialized
experts (last row in Table 1), we utilized all 15,787 vectors to
calculate the cell probabilities P

ð1Þ
1 ; P

ð1Þ
2 ; . . . ; P

ð2Þ
m�1 and found PBKS

B ¼
0:0712; EPBKS

gen ¼ 0:0773 (calculations for �NN ¼ 794 from (3.46) in
[20]). This outcome denotes that the expected probability of
misclassification increases 0:0773=0:0712 ¼ 1:086-fold. In a single
experiment with one training set and a noise injection, we got the
generalization error increase ratio 0:0726=0:0615 ¼ 1:181. The
average obtained in 10 experiments is 0:060=0:055 ¼ 1:091. These
results suggest that a noise injection approach practically eliminated
the expert bias effect.

While processing the results obtained in the simulation
experiments, we designed moderately pruned binary decision tree
classifiers to be used as the fusion rule. A moderate complexity
reduction of the fusion rule helped in reducing the generalization
error. However, for such simpler classifiers, an additional noise
injection was less effective. When comparing the efficacy of the
much more complex trainable BKS fusion rule with that of simple
fixed fusion rules, (e.g., the majority voting rule), we observed that
a nontrainable rule is more successful if the experts were
“generic,” i.e., not specialized in certain regions of the input
feature space, or if the classification errors of all expert classifiers
were comparable (row “Generic MLP” in Table 1). If the experts are
specialized and their performances differ substantially, then
majority voting loses against the multinomial rule with noise
injection (rows A, B, C, and “Specialized” in Table 1).

5 DISCUSSION

When designing trainable expert decision fusion rules, sample size
effects can be divided into three components: 1) an increase in the
generalization error due to imperfect training of the expert

classifiers, 2) an increase in the generalization error due to
insufficient training of the fusion rule, and 3) the experts’ boasting.
The expert boasting effect is present in all trainable fusion rules if the
training set is used twice, to trainboth the experts and the fusion rule.

Wehave shownboth theoretically andexperimentally that expert
boasting can become extremely harmful. If for high-dimensional
Gaussian data the standard linear Fisher classifiers are used as
experts and amultinomial classifier is used for fusion, (4), (5), and (6)
compensate the increase in generalization error and gives theoretical
explanation of the expert boasting phenomenon. The correction terms
cannotbeusedwhen thedataarenon-Gaussian,whenmore complex
types of the expert classification rules are employed, or when the
number of pattern classes exceeds two. Due to large variances of
statistical estimates of classification error, the correction terms are
also ineffective when the training set size is too small.

A more general technique, the k-nearest neighbor-directed noise
injection may be recommended. If the intrinsic dimensionality of
the data is not too high, noise injection helps in smoothing the cell
probability estimates of the multinomial classifier, simplifies the
fusion rule, and reduces the experts’ boasting effect. This technique
can be used even for selecting the experts in a fixed, nontrainable
majority voting procedure. In this case, artificial validation set
could be used to select a fixed number of best experts.

Our earlier experiments with spherical noise injection [19],
indicated that with increasing the noise variance �2

n, there is a
peaking effect for the generalization error as a function of �2n. Thus,
one of the problems for future research is to find a way to control
the �2n value. An important unsolved problem is determining what
is the minimal sample size for which the expert boasting effect can
still be reduced, at least in principle.
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