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Abstract

Much work in discriminant analysis and statistical pattern recognition has been performed

in the former Soviet Union. However, most results derived by former Soviet Union researchers

are unknown to statisticians and statistical pattern recognition researchers in the West. We

attempt to give a succinct overview of important contributions by Soviet Block researchers to

several topics in the discriminant analysis literature concerning the small training-sample size

problem. We also include a partial review of corresponding work done in the West.
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1. Introduction

Largely unknown to discriminant analysis (DA) and statistical pattern recognition
(SPR) researchers in the Western Hemisphere, a tremendous amount of research on
many varied topics in DA and SPR has been conducted and published in the former
Soviet Union. The initial motivation behind these research efforts was the late A.N.
Kolmogorov and his colleagues at his statistical methods laboratory at Moscow
University.
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Former Soviet Union DA and SPR researchers have also held several special
conferences on SPR. Bi-annual statistics conferences organized by S.A. Aivazyan
were held in Estonia and Armenia. Also, two specialized workshops concerning the
small training-sample problem were held in Druskininkai, Lithuania, in 1974 and
1984. Unfortunately, most of the SPR results presented at these conferences were
published only in Russian. Three exceptions are the review papers by Raudys and
Pikelis [128] and Raudys and Jain [126], and the monographs by Vapnik [152] and
Raudys [123]. Therefore, most of these results derived by Soviet Union DA and SPR
researchers are essentially unknown to all but a few Western DA and SPR
researchers.1

The goal of this review paper is to succinctly present an overview of interesting
and important results relating to small sample DA and SPR. These results have been
formulated and published not only by mathematicians and mathematical statisti-
cians, but also by engineers, physicists, computer scientists, and geologists. Thus, not
all results discussed here have been derived and stated in a totally rigorous manner.
We hope that many Western DA and SPR researchers will become cognizant of the
excellent breadth and depth of work that has been done and is ongoing in the former
Soviet Union. We include a partial review of corresponding work on these topics
published in the West.

This review paper is organized as follows. In Section 2 we provide preliminary
definitions used throughout the paper. In Section 3 we present some important
results concerning the error rates of several parametric-based statistical discriminant
functions. Section 4 contains some interesting results concerning regularized
statistical discriminant functions. Section 5 is devoted to results for various
nonparametric discriminant functions and to the misallocation robustness of the
sample linear discriminant function (SLDF). Section 6 deals with alternative linear
classifiers. In Section 7 we present important results on error-rate estimation, and in
Section 8 we give several little-known results on feature-subset selection for
statistical discrimination. We conclude with brief comments in Section 9.

2. Preliminaries

Allocatory DA and SPR techniques are powerful tools for designing statistical
classification algorithms and are frequently applied in the areas of data analysis and
pattern recognition. The paradigm for DA and SPR is as follows. Assume that each
member of the union of m distinct populations possesses a finite set of common
characteristics or features which we denote by f ¼ ðf1; f2;y; fpÞ: Also, the observed

feature values are denoted by x ¼ ðx1; x2;y; xpÞ0 such that xk is the observed value

of the feature fk; k ¼ 1; 2;y; p: Let Pi; i ¼ 1; 2;y;m; denote m distinct populations
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authors were published in Russian on the topic of small sample problems in statistical discrimination. For
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papers. Aivazyan et al. [1] also contains an excellent review of the topic.
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of observation vectors having multivariate probability density functions fiðxÞ; i ¼
1; 2;y;m; with means li and covariance matrices Ri; i ¼ 1; 2;y;m: Also, let ai;
i ¼ 1; 2;y;m; be the known a priori probabilities that an observation is selected
from population Pi; i ¼ 1; 2;y;m; respectively. Then, given a p� 1 observation
vector x selected randomly from the union of the populations Pi; i ¼ 1; 2;y;m; the
allocatory DA problem is to formulate a decision rule that optimizes some classifier
performance criterion. Throughout the remainder of this paper we shall consider the
probability of misclassification (PMC) as the classifier performance criterion, and we
consider only the two-population case, i.e. m ¼ 2:

For the two-population case, assuming all parameters are known, the optimal
statistical classification rule which minimizes the PMC is the Bayes rule. This rule is
formulated as follows: assign an observation x to P1 if

gBayesðxÞ ¼ ln
a1f1ðxjy1Þ
a2f2ðxjy2Þ40 ð2:1Þ

and to P2; otherwise.
There are two main parametric approaches for designing sample-based

statistical discriminant functions. The first, the ‘‘plug-in approach,’’ assumes
the class densities fiðxÞ ¼ fiðxjyiÞ; i ¼ 1; 2; are known with the exception of

the unknown vector of parameters yi: Inserting sample estimates #yi into fiðxjyiÞ
for yi and then applying (2.1) yields a plug-in statistical discriminant function.
The second method of designing sample-based statistical discriminant functions
is a Bayesian approach in which a prior density ppriorðyiÞ on the parameter

vector yi is assumed to be known. Then, one utilizes the ratio of the a posteriori
densities f ðyijxÞ; i ¼ 1; 2; to construct a statistical classifier. This approach to
classifier design, known as predictive discrimination, has been utilized by Geisser
[42], Keehn [60], Kovalevskij [72], and Pugachev [103] to formulate statistical
discriminant functions.

The performance of trained, or sample-based, classifiers depends on the particular
set of training vectors used in the classifier. Therefore, training-sample-based
classification rules differ from optimal classifiers in that the trained classifiers will
always have a larger PMC, or error rate, than optimal classifiers.

There are three types of nonoptimal error rates or nonoptimal PMCs: the
conditional PMC, the expected or unconditional PMC, and the asymptotic PMC.
The conditional PMC is the error rate of the classifier for a single training sample
from each population of interest. The expected PMC is the average conditional error
rate of the classifier trained or configured on arbitrary training sets of size N1 and N2:
The expected PMC, denoted by EPa

N1N2
; depends on the type of classifier a; the

training-sample sizes N1 and N2; and the classifier-training method. As the training-
sample sizes N1 and N2 increase, i.e., when N1;N2-N; the parameters of the
classifier will be estimated with increasing precision. Thus, EPa

N will tend to its

limiting value Pa
N: Here and below we use notations N1 ¼ N2 ¼ N and Pa

N ¼
limN-N EPa

N : We refer to Pa
N as the asymptotic PMC of the classifier a: When the

pattern-class density models are correct, then Pa
N ¼ PB; where PB is the optimal, or
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Bayes, error rate. The Bayes error rate is the PMC for a classifier when the data
model and all parameters are known.

For a finite number of training samples, EPa
N � Pa

N40 usually obtains. This

difference in the expected and asymptotic PMCs depends on the type, complexity,
and capacity of the classification rule used, on the training-sample sizes N1 and N2;
and on the pattern-class characteristics (the dimensionality of the feature vector, the
configuration of the class distributions, etc.).

The difference EPa
N � Pa

N and the ratio k ¼ EPa
N=P

a
N are very important

characteristics of any classifier. One can use these entities as criteria for
selecting the proper classifier complexity, which is a function of the number of
parameters in the classifier to be estimated, for determining the optimum number of
the features, deriving sufficiently large training-sample sizes, and estimating the
PMC of interest. Therefore, many papers have been written concerning the
difference EPa

N � Pa
N (or the ratio EPa

N=P
a
N) for various statistical classification

rules. Most of the error-rate results derived by Western DA and SPR researchers are
reviewed in [22,28,39,56,89].

3. The expected PMC of some parametric-based sample discriminant functions

The first attempt to estimate the difference between the expected and
asymptotic error rates was made at the Institute for Numerical Analysis at
the University of California in Los Angeles using Monte Carlo simulation
(see references in [143]). Sitgreaves [140] derived the first exact expression for the
expected error rate of Fisher’s sample linear discriminant function (SLDF). Her
closed-form expression is a five-fold infinite sum of products of certain hypergeo-
metric functions. Her derivation was based on Bowker’s [10] representation of the
SLDF in terms of independent standard-normal random variables. Estes [33]
succeeded in calculating this sum, but the accuracy attained was poor. John [57]
represented the SLDF as the difference of two independent chi-square variables and
expressed the expected error rate in a closed form as an infinite sum. Pikelis [99]
improved the calculation accuracy obtained by Estes and presented a table for the
expected error rate as a function of the Mahalanobis distance (see [128], and
references therein).

Okamoto (1963, [96]) first derived an asymptotic expansion for the expected error
rate of the SLDF. The expansion is obtained under the scenario where the training-
sample size n ¼ N1 þN2-N and all other parameters, including the data
dimensionality, are fixed. Okamoto’s expected error-rate approximation often yields
rather inaccurate expected error-rate values if the dimensionality p is large relative to
N; i.e., if N=po5: Later, several similar asymptotic expansions appeared both in the
Western countries and in the USSR. These include asymptotic expansions by
Anderson [6], Efron [29], Smith [142], McLachlan [85–87], Fukunaga [39], Raudys
[111], Raudys and Skurikhina [131], Zarudskij [160], Meshalkin [91], Meshalkin and
Serdobolskij [93], Serdobolskij [137], Barsov [7,8], Kharin [63–65], Kharin and
Duchinskas [68], and Golcov and Troitsky [44].
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As mentioned above, for Western asymptotic approximations of expected
error rates, the convention has been to fix p and let Ni-N; i ¼ 1; 2: This
approach differs from that used by most Soviet Union DA and SPR researchers.
Their approach has been to simultaneously let Ni-N; i ¼ 1; 2; and p-N at a rate
such that p=Ni-li; where li; i ¼ 1; 2; are positive constants. The resulting
asymptotic error-rate formulations often yield very good approximations even for
the case when the training-sample sizes are small relative to the observation
dimension [159]. During the last decade this ‘‘double asymptotic approach’’ to
expected error-rate approximation has become popular in the analysis of the
generalization error, or expected error rate, of artificial neural network (ANN)
classifiers [52,53,76,90,98]. In the ANN literature this approach is known as the
thermodynamic limit approach. We now review a portion of the many important
error-rate results for parametric-based statistical classifiers developed in the former
Soviet Union.

We now discuss some results concerning the linear discriminant function. First,
consider the plug-in linear discriminant function with known covariance matrix and
unknown mean vectors

gFnðxÞ ¼ x0R�1ð %x1 � %x2Þ � 1
2
ð %x1 þ %x2Þ0R�1ð %x1 � %x2Þ; ð3:1Þ

where %x; %x2 are the sample mean vectors calculated from the training data
and R is the known covariance matrix. Apparently, the first paper using the
double asymptotic approach to error-rate approximation, where the ratio
of the learning sample size N and the dimensionality p of the feature space, are
increasing at a constant rate, was published by Raudys [108] for (3.1) when R ¼ I:
Raudys [108] assumed the dimensionality p and the training sample sizes N1 ¼
N20 ¼ N are large, in which case the classifier (3.1) is approximately distributed as a
Gaussian random variable. Under these assumptions Raudys [108] derived the error-
rate expression

EPFn

N EF � d
2
ffiffiffiffiffiffi
Tm

p
 !

; ð3:2Þ

where d2 ¼ ðl1 � l2Þ0ðl1 � l2Þ is the squared Euclidean distance between the

multivariate Gaussian populations P1 and P2;Tm ¼ 1þ 1
N
ð1þ 2p

d2
Þ þ p

N2d2
; Fð�Þ is the

standard normal cumulative distribution function, and the notation aEb means
a� b-0: This type of asymptotic analysis was also used to obtain the approximate
error-rate expressions (3.4), (3.7),(3.10), (3.14), (3.16), (7.2), and (7.3) below. For a
sufficiently large common training-sample size N; expression (3.2) reduces to

EPFn

N EF �d
2

1þ 2p

Nd2

� ��1=2
 !

: ð3:3Þ

The expected PMC approximation (3.3) reveals that the dimensionality p and the
common training-sample size N are linearly related.

If one assumes covariance matrix R ¼ s2I in expression (3.1), the statistical
discriminant function (3.1) is known as the sample Euclidean-distance classifier
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(SEDC), which is of the form

gEðxÞ ¼ x0ð %x1 � %x2Þ � 1
2
ð %x1 þ %x2Þ0ð %x1 � %x2Þ:

Raudys [108] also analyzed the case when fiðxjyiÞ ¼ fiðxjli;RÞ; i ¼ 1; 2; where

Ras2I; and derived an expected PMC approximation for the SEDC. His expected
error-rate approximation is

EPE
NEF �d

2
1þ 2pn

N2ðdnÞ2
" #�1=2

0
@

1
A; ð3:4Þ

where dn ¼ ðl1�l2Þ0ðl1�l2Þ
½ðl1�l2Þ0Rðl1�l2Þ�1=2

is a modified squared Mahalanobis distance and

pn ¼ ððl1 � l2Þ0ðl1 � l2ÞÞ2 tr R2

ððl1 � l2Þ0Rðl1 � l2ÞÞ2
ð3:5Þ

is a modified dimensionality measure. When Ras2I; PE
N ¼ Fð�dn=2ÞXPF

N ¼
Fð�d=2Þ:

Conditions on the population covariance structures such that PE
N ¼ PF

N;
assuming the population means are fixed, are given in [81]. One can easily see from

expression (3.5) that 1opnoN: Therefore, in the extreme case when pn ¼ 1; the
SEDC is only slightly sensitive to the common training-sample size N: In the case

when pn is extremely large, the SEDC is very sensitive to the common training-
sample size N:

Expression (3.3) approximates the expected PMC of a piecewise-linear
classifier based on the Euclidean distances of the vector x to the 2m spherical
cluster centers of the training-data sets of two separate pattern classes. In this case
one should use a common training-sample size of Nm ¼ N=m instead of N in
expression (3.3) [58].

Estimating and incorporating the common population covariance matrix R from
the two training samples yields the traditional SLDF,

gFðxÞ ¼ x0S�1ð %x1 � %x2Þ � 1
2
ð %x1 þ %x2Þ0S�1ð %x1 � %x2Þ; ð3:6Þ

that is regularly referred to as the standard Fisher’s linear discriminant function, or
Anderson’s statistic (referring to T.W. Anderson). Assuming multivariate Gaussian
pattern classes, the SLDF can be derived as a plug-in-based classifier. A.D. Deev,
from the A.N. Kolmogorov Laboratory of Statistical Methods at Moscow State
University, formalized the double asymptotic approach in a strictly mathematical
way: he formally required N-N; p-N; p=N-constant; and Mahalanobis
distance d ¼ constant: Under this approach several subsequent asymptotic
expansions were obtained for Gaussian and nonGaussian models. Two
simple formulae for the approximate expected error for the standard Fisher
linear DF were obtained in [19,20,111]. For the SLDF with N1 ¼ N2 ¼ N and
assuming Gaussian populations, an approximate expected PMC expression for
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large values of N and p is

EPF
NEF �d

2

ð2N � 3Þð2N � p� 3Þ
ð2N � p� 2Þð2N � p� 5Þ 1þ 1

N
1þ 2p

d2

� ����

þ p

N2d2

�
þ d2

2ð2N � p� 5Þ
��1=2

)

-F �d
2

1þ 2p

Nd2

� �
2N

2N � p

� ��1=2
 !

; ð3:7Þ

where N4p=2 and d2 ¼ ðl1 � l2Þ0R�1ðl1 � l2Þ is the squared Mahalanobis distance

between the populations P1 and P2:

Notice that in the last expression in (3.7), the term 2N
2N�p

reflects the increase in the

expected PMC due to estimation of the common covariance matrix R:2 The term

1þ 2p

Nd2
reflects the increase in the expected PMC due to estimation of the two p-

variate mean vectors m1 and m2: We also note that (3.7) allows one to understand the
asymptotic relationship between the sample size and the dimensionality.

If the training-sample sizes differ so that N1aN2; then Deev [19,20], using the
double asymptotic approach, showed that the expected PMC of the SLDF is
approximately

EPF
N1N2

E a1F � d2 � l1 þ l2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ l1 þ l2Þ N1þN2

N1þN2�p

q
0
B@

1
CA

þ a2F � d2 þ l1 � l2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ l1 þ l2Þ N1þN2

N1þN2�p

q
0
B@

1
CA; ð3:8Þ

where p=Ni-li; i ¼ 1; 2: Note that expression (3.8) is a generalization of (3.7) and
that (3.8) reduces to (3.7) when N1 ¼ N2:

In view of expression (3.8), we see that differing signs of the terms (l1 � l2Þ in both
of the above summands can cause an increase in the classification error when

N1aN2:
3 The evaluation of the approximation to EPF

N1;N2
given in (3.8) indicates

that the plug-in approach to linear classifier construction is not optimal. To partially
remedy this property of the SLDF, Deev [20] proposed the utilization of a threshold
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2Pikelis [100] used an exact formula in the form of an infinite sum of certain functions to calculate the

expected error of the SLDF. Wyman et al. [159] used a simulation study to compare the small sample

efficacy of several asymptotic expansions for the SLDF and found that the expansions based on the

approach that p-N and N-N such that p=N-l are superior to the asymptotic expansions where p is

held constant and N-N:
3Deev, in fact, proposed using additional higher order terms than those in the error-rate expansion (3.8).

The complete asymptotic error-rate expansion is very complex but has been verified by Pikelis [100] to be

highly accurate.
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constant yielding a linear classifier of the form

gDeevðxÞ ¼ gFðxÞ þ c;

where c is chosen to minimize the expected PMC expression

EPDeev
N1N2

a1EF
2c� ðd2 � l1 þ l2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ l1 þ l2Þ N1þN2

N1þN2�p

q
0
B@

1
CA

þ a2F � 2cþ ðd2 þ l1 � l2Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ l1 þ l2Þ N1þN2

N1þN2�p

q
0
B@

1
CA:

One can easily derive the optimal value of c that minimizes EPDeev
N1;N2

; which is

copt ¼ �1
2
ðl1 � l2Þ:

We note that when N1 ¼ N2; then l1 ¼ l2 and therefore copt ¼ 0: There are a

number of asymptotic expansions derived where only the sample size tends to
infinity. To derive such an expansion, Efron [29] represented an increase in the
conditional classification error as a sum of two chi-square random variables and
obtained

EPF
NEF �d

2

� �
þ f

d
2

� �
d2=4þ ð1þ d2=4Þðp� 1Þ

2Nd
;

where fðcÞ is the standard Nð0; 1Þ Gaussian density function.
Wyman et al. [159] have shown that the double asymptotic expression (3.7)

outperforms Efron’s expression in accuracy. Recently in the West, Koolaard
and Lawoko [71] have compared the expected error rates of the EDC and
SLDF via asymptotic expansions, and Fujikoshi [37] and Fujikoshi and Seo [38]
have employed a double asymptotic approach to derive expected error-rate
approximations for the SLDF. Also, Viollaz et al. [157] have derived an asymptotic

approximation for EPF
N :

The nonoptimality of the plug-in approach to statistical classifier construction is
even more clearly demonstrated in the case of the sample quadratic discriminant

function (SQDF) defined as

gQðxÞ ¼ ðx� %x2Þ0S�1
2 ðx� %x2Þg � fðx� %x1Þ0S�1

1 ðx� %x1Þ

þ ln
jS2j
jS1j
� �

þ 2 lnða1=a2Þ: ð3:9Þ

If one applies the SQDF, one tacitly assumes that the two-population covariance
matrices R1 and R2 are unequal. When N1 ¼ N2 ¼ N and R1 ¼ R2; Raudys [111]
derived the following approximation for the asymptotic expected PMC of the SQDF
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defined in (3.9), which is

EP
Q
NEF �d

2
1þ pþ 2

N � p� 4

� �
1þ 1

N
1þ 2p

d2

� �
þ p

N2d2

 "0
@

þ ðd4=2Þ þ pþ pðd2 þ pÞ
ðN � p� 4Þd2

!#�1=2
1
A: ð3:10Þ

In (3.10) one can see that for a small dimension p and a large Mahalanobis distance
d; the functional relationship between the training-set size N and the dimension p is
nearly linear. However, for a large dimension p; the functional relationship between

N and p is quadratic, i.e., p2=N: In spite of the comparatively high accuracy, in
comparison with the exact expected errors given in [128] expression (3.10) provides
slightly optimistic estimates. Takeshita and Toriwaki [145] compared a modification
of expression (3.10) with a similar expression derived by Fukunaga [39]. He
determined that for pattern-class configurations having small error rates, the double
asymptotic approach yields more accurate expected error-rate approximations.

For linear classifiers the double asymptotic approach yields surprisingly
accurate expected error-rate approximations, even for the case when N=p is
small. That is, the expected error-rate approximations derived by former
Soviet Union researchers apply not only to the large training-sample size case,
but also to the small training-sample size situation. Pikelis [100] used his
exact formula in the form of an infinite sum to calculate the expected error
of the SLDF. He then found that the simple expected error-rate approximations
(3.7) and (3.8) outperform the Okamoto (1963) expansion in accuracy. Also,
Wyman et al. [159] used a simulation study to compare the small sample
efficacy of several asymptotic expansions for the SLDF and found that
the expansions based on the double asymptotic approach are superior to the
asymptotic expansions where p is held constant and N-N: Viollaz et al. compared
the expected error-rate approximations of Raudys, Deev, and Okamoto to their
expected error-rate approximation and found that their approximation along with
those of Raudys and Deev gave excellent results even for the very small training-
sample size case when NEp:

Another important characteristic of the conditional PMC for a classifier is its
variance. Researchers in the Western Hemisphere have made important contribu-
tions to this topic. Efron [29] represented the increase in the conditional error rate as
a quadratic form of normal variables. He presented asymptotic expressions for the
mean and the variance of the conditional classification error. He also compared the
SLDF with the logistic regression classification procedure for the case where the
actual pattern classes are multivariate Gaussian. The approximate standard
deviation of the conditional error is

ffiffiffiffiffiffiffiffiffiffi
VPF

N

q
E

fðd=2Þffiffiffi
2

p
dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d4

16
þ 1þ d2

4

� �2

ðp� 1Þ
s

: ð3:11Þ
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Formula (3.12) shows an interesting behavior for the conditional error rate. From
the double asymptotic approach, it follows that when both N and p are
simultaneously and proportionally increasing, the expected PMC tends to a constant
value. The standard deviation, however, tends to zero. This fact suggests that,
regardless of which randomly selected training set one will use in the high-
dimensional case, one will obtain approximately the same conditional error. Thus in
the high-dimensional cases, one needs to be concerned only to the expected PMC,
and not the variance of the conditional classification error. This is an important
conclusion for practitioners.

O’Neil [97] generalized Efron’s representation for the case when the discriminant
function is nonlinear and the actual pattern classes are not Gaussian. Sayre [135]
used Efron’s representation to derive an expression for the variance of conditional
PMC of the SLDF. The conditional PMC variance was also studied by McLachlan
[87] and Schervish [136] (also see [89]).

The plug-in estimate of multivariate Gaussian density is biased. Lumelskij [80]
proposed an unbiased estimate. The asymptotic expected PMC expression for the
SQDF becomes much more complicated than (3.10) for the case when R1aR2 and
N1aN2 [111]. The asymptotic expected PMC approximations for the SQDF indicate
that increasing the training-sample size Ni in one pattern class and keeping the other

sample size Nj fixed for i; j;¼ 1; 2; iaj; can actually increase EPQ
N [45,116]. This

phenomenon is caused by the fact that when Ni5Nj; i; j ¼ 1; 2; iaj; gQðxÞ is a very

biased estimator of the Bayes DF (2.1) from which the plug-in SQDF is derived. The

major component of this bias is induced by inverse sample covariance matrices S�1
1

and S�1
2 : Therefore, the expectation of the SQDF with respect to random matrices S1

and S2 [113] is

EgQðxÞ ¼ b1ðx� %x2Þ0R�1
2 ðx� %x2Þg � b2fðx� %x1ÞR�1

1 ðx� %x1Þ

þ ln
jR2j
jR1j
� �

þ b3 þ 2 lnða1=a2Þ; ð3:12Þ

where

b1 ¼ N2 � 1

N2 � p� 2
;

b2 ¼ N1 � 1

N1 � p� 2
;

b3 ¼
Xp
j¼1

c
N2 � j

2

� �
�
Xp
j¼1

c
N1 � j

2

� �
þ p log

N1 � 1

N2 � 1

� � !

and cðrÞ is the psi Euler (diagamma) function [144].
For instance, assuming multivariate Gaussian class densities of dimension p ¼ 40

with R2 ¼ 2R1 and N1 ¼ N2 ¼ 200; we obtain EP
Q
N ¼ 0:151: For this configuration

with N1 ¼ 200 and N2 ¼ 20; 000; we have that EP
Q
N ¼ 0:170: However, for the

same configuration, if N1 ¼ 20; 000 and N2 ¼ 200; the result is EPQ
N ¼ 0:074 [116]. A
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less-biased quadratic discriminant function follows directly from (3.12) in the
form of

gQðxÞ ¼ ðx� %x2Þ0S�1
2 ðx� %x2Þg=b2 � fðx� %x1Þ0S�1

1 ðx� %x1Þ=b1

þ ln
jS2j
jS1j
� �

� b3 þ 2 lnða1=a2Þ:

Simulation experiments have shown that this bias modification of the SQDF works
well if the overlap between the populations is small and the difference between the

expected and asymptotic error is not too large ðEPQ
No2PQ

NÞ:
The dimensionality of the parameter vectors yi in fiðxjyiÞ; i ¼ 1; 2; is an important

factor that determines the complexity of parametric-based statistical discriminant
functions. The statistical classifier’s sensitivity to the training-sample sizes becomes
obvious when one compares the approximate expected PMC expressions (3.3) and

(3.7). The assumption of R1 ¼ R2 ¼ s2I used to design the SEDC in (3.4) is much too
restrictive for many practical DA and PR applications. The less-restrictive
assumption that R1 ¼ R2 ¼ D; where D is a diagonal covariance matrix, is more
palatable. Under this diagonal common covariance assumption, one will likely use
the classifier

gLDðxÞ ¼ x0 #D�1ð %x1 � %x2Þ � 1
2ð %x1 þ %x2Þ0 #D�1ð %x1 � %x2Þ;

where #D is a diagonal matrix composed of the diagonal elements of the sample
covariance matrix. Raudys [111] showed that an expression for the asymptotic
expected PMC for gLDðxÞ is

EPLD
N EF �d

2
1þ 1

N
1þ 2p

d2

� �
þ p

N2d2
þ dð4Þ
4ðN � 3Þ

� ��1=2
 !

; ð3:13Þ

where d2ð4Þ ¼ 1
d2
Pp

k¼1
ðm1k�m2kÞ4

s2
k

and s2k is the variance for the kth feature, k ¼
1; 2;y; p: For small training-sample sizes, the term d2ð4Þ=4=ðN � 3Þ can become

quite large. However, for very large values of the training-sample size N; the

terms p=N2=d2 and d2ð4Þ=4=ðN � 3Þ are essentially zero and, therefore, (3.13)

reduces to

EPLD
N EF �d

2
1þ 2p

Nd2

� ��1=2
 !

: ð3:14Þ

One can now readily see that the approximation for EPLD
N given in (3.14) is

identical to expression (3.3), which is an approximate expression for the Euclidean

distance classifier EPFn

N : Thus, estimating the variances in gLDðxÞ increases the

expected error rate only slightly.
When one does not assume equal diagonal covariance structures for both

pattern-class models but assumes only that each pattern-class model has a
unique diagonal covariance matrix ðD2aD1Þ; instead using (3.9) one might choose
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the quadratic classifier

gQDðxÞ ¼ ðx� %x2Þ0 #D�1
2 ðx� %x2Þ � ðx� %x2Þ0 #D�1

2 ðx� %x1Þ

þ ln
j #D2j
j #D1j

� �
þ 2 lnða1=a2Þ: ð3:15Þ

Assuming multivariate normality of the pattern classes and that the true covariance
matrices are diagonal and common for both populations ðR2 ¼ R1 ¼ DÞ; a1 ¼ a2;
N2 ¼ N1 ¼ N; Raudys [111] derived an asymptotic expected PMC approximation
for the quadratic discriminant function (3.15), which is

EP
QD
N EF �d

2
1þ 4p

Nd2

� ��1=2
 !

: ð3:16Þ

From expressions (3.14) and (3.16), one can derive the important conclusion that
under the equal diagonal covariance matrix assumption, the estimation of the p feature
variances does not significantly affect the expected PMC of the classifier gLD: This
result was generalized by Deev [21]. Deev analyzed two Gaussian pattern-class models
with common covariance structures composed of h independent blocks of the form

R ¼

R1 0 y 0

0 R2 y 0

^ ^ ^ ^

0 0 y Rh

2
6664

3
7775: ð3:17Þ

Assuming equal block-diagonal covariance structures, one can utilize the statistical
classifier

gBðxÞ ¼
Xh
i¼1

x0iS
�1
i ð %xð1iÞ � %xð2iÞÞ

� 1

2
ð %xð1iÞ þ %xð2iÞÞ0S�1

i ð %xð1iÞ � %xð2iÞÞ þ c; ð3:18Þ
where %xð1iÞ and %xð2iÞ; i ¼ 1; 2;y; h; are pj-dimensional sample-mean vectors for each

block of the two assumed pattern classes, Si is the sample maximum likelihood
estimate of Ri for each block of the covariance structure, and c is a threshold constant.
Asymptotically, as the dimensions pj and the training-sample sizes N1 and N2 become

arbitrarily large in a manner such that ratio pj=Ni-lij; an expected PMC asymptotic

approximation for block model (3.18) is

EPB
NE a1F

2c�Ph
j¼1ðd2j � l1j þ l2jÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

j¼1ðd2j þ l1j þ l2jÞ N1þN2

N1þN2�pj

q
0
B@

1
CA

þ a2F
�2c�Ph

j¼1ðd2j þ l1j � l2jÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

j¼1ðd2j þ l1j þ l2jÞ N1þN2

N1þN2�pj

q
0
B@

1
CA: ð3:19Þ
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Note that in expression (3.19), instead of the single term TS ¼ N1þN2

N1þN2�p
; as in (3.8), we

have the multiple terms TSj
¼ N1þN2

N1þN2�pj
; j ¼ 1; 2;y; h:

A very interesting model allowing one to reduce the number of parameters
to be estimated is the tree-dependence model introduced for discrete variables
by Chow and Liu [15]. This model assumes a covariance structure in
which each component of the feature vector x depends on only one other
component. Zarudskij [160,161] represented the inverse of the first-order tree-
dependence covariance matrix of a multivariate Gaussian distribution in a special

manner that allows simple estimation. To denote his representation of R�1; let R ¼
½ðsijÞ� and R�1 ¼ C0C; where

cij ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjjð1�r2

jmi
Þ

p if j ¼ i;

�rimiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjjð1�r2

jmi
Þ

p if j ¼ mi;

0 if jai;mi;

8>>>><
>>>>:

and rij ¼ sijffiffiffiffiffiffiffisiisjj
p : Then, as p-N; N1-N; and N2-N such that p=Ni-li; i ¼ 1; 2;

Zarudskij [160,161] showed that for the tree-dependence model classifier, we have

EPTD
N E a1F �d2 � l1 þ l2 � 2c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l1 þ l2

p
 !

þ a2F �d2 þ l1 � l2 þ 2c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l1 þ l2

p
 !

: ð3:20Þ

If N2 ¼ N1 for very large values of the training-sample size N; expression (3.20)
reduces to (3.3). Meshalkin [91] analyzed a model of independent discrete variables,
where each variable can have mj states, j ¼ 1; 2;y; p:When the maximum likelihood

method is used to estimate the class conditional probability of each state and when
one uses a plug-in classification rule, then asymptotically as Ni-N; i ¼ 1; 2; and

p-N such that
Pp

j¼1 ðm
j
� 1Þ=Ni-lni ; i ¼ 1; 2; the expected PMC is approximated

as

EPDS
N EF � F

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ ln1 þ ln2

q
0
B@

1
CA; ð3:21Þ

where F ¼Pp
j¼1

Pkj
s¼1

ðP1js�P2jsÞ2
ðP1jsþP2jsÞ is a discrete analog of the squared Mahalanobis

distance and Pijs is the probability that the jth variable in the class Pi assumes the sth

state.
In some applications, values of the discrete variables are obtained after

quantization of continuous components of the feature vector x: If one can employ
a priori information concerning the pattern-class probability density function, then,
instead of expression (3.21), as Ni-N; i ¼ 1; 2; and p-N such that p=Ni-li;
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i ¼ 1; 2; the expected PMC is approximated as

EPDIS
N EF � d2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l1 þ l2

p
 !

:

A generalization of this result was derived by Meshalkin and Serdobolskij [93] and
Serdobolskij [92]. For multivariate feature vectors possessing the block independence
covariance structure (3.17) with some two pages of regularity conditions (that we
omit), they analyzed the performance of the discriminant function

gBLðxÞ ¼
Xh
j¼1

ln
fjðx; #y1lj ; #ynsj jP1Þ
fjðx; #y2lj ; #ynsj jP2Þ

þ c;

where h is the number of independent blocks of the vector x; #yilj is the lj-variate

parameter vectors (assumed to be different in the two competing pattern classes), #ynilj
is the sj-variate parameter vectors (assumed to be common for both pattern classes),

and c is a classification threshold. Let l ¼Ph
j¼1 lj; s ¼

Ph
j¼1 sj; and N14N2: Thus, if

h-N; N1-N; and N2-N such that l=N1-l1; l=N2-l2; s=N1-t1; and
s=N2-t2; then the conditional PMC tends to (3.20) where d now denotes a
generalization of the Mahalanobis distance between the two populations.

This fundamental result of Meshalkin and Serdobolskij is exact if both the sample
size and the dimensionality are large. For moderate values of p and N; the more
complex asymptotic formulae such as (3.10) give slightly higher accuracy. Expression
(3.20) is important if one analyzes discriminant functions with structured covariance
matrices (SCM) such as the tree-type dependency structure. In this case, one can
describe the resulting discriminant functions assuming the SCM model by relatively
few parameters. According to Meshalkin and Serdobolskij’s result, the SLDF under
the SCM model is relatively insensitive to the training-sample size. Han [49],
Morgera and Cooper [94], and Ge and Simpson [41] have carried out investigations
of classification rules derived under the SCM model. Their results agree that
classifiers designed by applying the SCM model are less sensitive to relatively small
training-sample sizes.

Other asymptotic expansions for general families of class densities fiðxjyiÞ were
obtained by Golcov and Troitsky [44] and Kharin and Duchinskas [68]. The latter
two Soviet Union researchers showed that for regular density families with a fixed

observation space, the expected PMC tends to the Bayes error as B1
N1
; B2
N2
; where B1 and

B2 depend on the prior probabilities a1 and a2 and the parameters of the pattern-class
densities. They applied a Chibisov [14] expansion of the maximum likelihood
estimates to obtain the coefficients B1 and B2: This approach was later used by Kharin
[66] to obtain an explicit expected PMC expression for the multivariate Gaussian
case and by Kharin [61,67] to obtain an expected PMC expression when the actual
pattern-class densities differ from the assumed pattern-class densities.

Apart from the derivation of asymptotic expected PMC approximations, former
Soviet Union researchers have developed roughly ‘‘exact’’ expected PMC expres-
sions written in the form of infinite series or integrals of certain functions. Such
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expressions have been formulated by Raudys [109] for the SEDC, Pikelis [99] for the
SLDF with independent features, Raudys and Pikelis [127] for the SLDF, and
Raudys [113] for the SQDF. These expected PMC expressions are summarized and
tabulated in Raudys and Pikelis [128].

4. Regularized statistical discriminant analysis for the SLDF

We now briefly consider the two-population classification rules designed to deal
with situations when l1al2; R1 ¼ R2; and the training-sample sizes are very small

relative to the feature dimension p: When the total training-sample size n ¼ N1 þN2

is less than p; the pooled-sample covariance matrix S is singular and, thus, a problem
for the expression of the SLDF arises. Harley [51] and DiPillo [25,26] formulated the
problem of regularization of the covariance matrix in the small training-sample size

situation. They suggested that one replace the estimator S�1 with the estimator S�1
R ;

where SR ¼ Sþ t� I; I is the p� p identity matrix, and t40 is the regularization
parameter. This estimator yields the sample regularized linear discriminant function

(SRLDF)

gRLðxÞ ¼ x0S�1
R ð %x1 � %x2Þ � 1

2
ð %x1 þ %x2Þ0S�1

R ð %x1 � %x2Þ: ð4:1Þ
For more details concerning linear and nonlinear regularized discriminant analysis,
see [36,78,79,89,134]. Barsov [7,8] analyzed the performance of the SRLDF when the
pattern classes are Gaussian with a common unknown covariance matrix and
different known mean vectors. He showed that if a1 ¼ a2; l1 and l2 are known but R
is unknown, then asymptotically for p-N; n ¼ N1 þN2-N; and p=n-lo1; an
expected PMC approximation for the SRLDF is

EPRL
N EF � K0AðtÞK

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0A2ðtÞK

q 1� t2m2ðtÞ
n

ðtrA2ðtÞÞ
� �1=20

B@
1
CA; ð4:2Þ

where K ¼ R�1=2ðl1 � l2Þ; AðtÞ ¼ ðR�1 þ tmðtÞIÞ�1; mðtÞ satisfies the equation

tð 1
mðtÞ � 1ÞDð1=nÞ½trAðtÞ�; and aEb is defined as a ¼ bð1þ oð1ÞÞ asymptotically.

Since R is unknown, Barsov [8] proposed estimating the optimal regularization
parameter t by minimizing the estimate of the asymptotic expected error rate

ÊPRL
N EF � K0S�1

R K

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0S�1

R SS�1
R K

q 1� p

n
þ trðS�1

R Þ
n

� �1=2

0
B@

1
CA:

Another approach to solving the regularization problem for the SLDF has been
formulated by Serdobolskij [139], who proposed using a generalized regularized

estimator of R of the form SGR ¼ ROðSþ tSÞ dZðtÞ; where ZðtÞ is a weighting

function. Serdobolskij [139] also proposed a method of determining the optimal
weighting function ZðtÞ:
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Raudys and Skurikhina [131] and Raudys et al. [132] obtained an explicit

asymptotic approximation for EPRL
N as a function of the parameters of two

multivariate Gaussian populations with a common covariance structure, common
training-sample sizes, and the regularization parameter t: They derived an expression
for the conditional PMC in terms of the conditional mean and variance of the
SRLDF. However, when both the dimension p and the training sample sizes N are
large, the mean and variance of the SRLDF tend to constants, and both the
conditional and expected PMCs are approximated as

EPRL
N EF �d

2

Ttffiffiffiffiffiffiffiffiffiffiffi
TmTS

p
 !

; ð4:3Þ

where

Tm ¼ 1þ 1

N
1þ 2p

d2

� �
þ p

N2 d2
; TS ¼ 2N

2N � p
;

Tt ¼ ð1þ 2tb1TS þ t trðD�1Þ=NÞ1=2
1þ tb2TS

;

bi ¼ lD�1l

d2
gi þ

trD�1

2N � p
;

g1 ¼ 1 and g2 ¼ 1þ 2 trD�1

NlD�1l

� �
1þ 2p

Nd2

� ��1

:

We note that a portion of expression (4.3) coincides with the analogical expression
for the standard Fisher discriminant function without regularization as described in
expression (3.7). The difference between (4.3) and (3.7) occurs in the additional term
Tt; that is responsible for the regularized estimate of the covariance matrix. This
asymptotic expected PMC approximation is an explicit function of the regularization
constant t: Therefore, (4.3) can be used as a criterion function to obtain an
approximately optimal regularization value of t; that is,

topt ¼ 1

b1TS

� 1

b2TS þ tr D�1

4N

: ð4:4Þ

Note in expression (4.4) that topt is a monotonic decreasing function of the

common training-sample size N: Using the asymptotic expected PMC expressions
(4.3) and (4.4), one can analytically examine the differences in the expected PMCs
between the SRLDF defined in (4.1) and the SLDF defined in (3.6) for various
covariance structures and ratios of the training-sample sizes to the dimensionality.
We note also that the derivation of expression (4.3) is based on a Taylor series

expansion of ðSþ tIÞ�1 that is accurate only for very small values of t:
An alternative to a regularized SLDF in the case when n is less than p is the

standard Fisher classifier using the pseudoinverse of the pooled-sample covariance
matrix S: Raudys and Duin [125] have shown that the expected error rate of such a
linear classifier has a peaking behavior. That is, the expected error rate decreases as
N ranges from 1 to p=2 and then increases as N ranges from p=2 to p [125].
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5. Density estimation-based statistical classifiers

In many applications we have data contaminated by ‘‘noise,’’ i.e., the
measurement vectors have many atypical observations, or outliers (see, e.g., [54]).
In some cases the class indexes of the training vectors are determined with errors.
For this type of data, special decision-making rules should be derived. Randles et al.
[105] suggested generalized linear and quadratic discriminant functions using robust
estimates. Two additional important DA topics studied by Soviet Union researchers
are the topics of classifier design and error-rate analysis of robust and nonparametric
statistical classifiers. Kharin [63,67] suggested the SLDF when each training sample
is contaminated by observations from the other class and derived an asymptotic
approximation for the expected PMC.

To consider his results, let 1� ti be the probability that an observation vector
labeled as belonging to class i actually belongs to class j; and let ti be the probability
that an observation is mislabeled as belonging to population Pi; i ¼ 1; 2: Kharin
[65,67] derived an expression for the expected PMC of the standard linear Fisher
discriminant function with parameters estimated from the contaminated data

EPLC
N ¼ PB þ gðt1; t2Þ þ

X2
i¼1

ai
Ni

þ tibi
Ni

� �
þ oðt20Þ;

where t0 ¼ maxft1; t2g; ti ¼ maxfti; ð1þ tiÞ=Nig; d; ai; and bi are functions of the
pattern-class densities fiðxjyiÞ; and g depends on the contamination levels t1 and t2:

Kharin suggested modifying the traditional plug-in SLDF rule to reduce the
negative influence of contaminated training samples. For example, for the SLDF
with known covariance but unknown means, Kharin has proposed using the

estimators *li ¼ %xi þ ð�1Þitið %x1 � %x2Þ; i ¼ 1; 2: For the case when R2aR1 and Ri is
unknown, i ¼ 1; 2; the resulting quadratic discriminant function is considerably
more complex than the plug-in SQDF defined in (3.9) [65]. For details see [67].

Popular nonparametric techniques to classify multimodal populations are the
nonparametric classifiers such as the k-nearest neighbor ðk �NNÞ classifier and the
kernel-density-estimation classifier using the Parzen window [28,39]. Raudys et al.
[130] compared 13 different classification algorithms and found that the SLDF and
PW classifiers perform the best for the classification of several real-world pattern
recognition problems. Kharin [62–64] analyzed the expected PMC’s of the k �NN

and the Parzen window (PW) classifiers. The statistical discriminant function using
the PW is

gPWðxÞ ¼
X2
i¼1

ð�1Þ3�i

Ni

XNi

j¼1

K
ðx� xijÞ0ðx� xijÞ

t

� �
;

where Kð�Þ is the kernel function, t is the smoothing parameter, and xij is the jth

training observation from the ith pattern-class population. Kharin’s asymptotic
expected PMC expression for gPWðxÞ is

EPPW
N ¼ PB þ t4DPN þ H

lpN
þOð1=NÞ; ð5:1Þ
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where PB is the Bayes error and DPN and H are functions of the pattern-class
densities fiðxjyiÞ; i ¼ 1; 2: Kharin utilized expression (5.1) as a criterion function and
assumed that t ¼ bN�g in order to determine the asymptotically optimal values of

gopt ¼ 1
pþ4

and bopt ¼ pt
4
; where t is a function of the pattern-class densities fiðxjyiÞ;

i ¼ 1; 2:
Raudys [116] determined that when the ratio of the training-sample size N to the

dimension p is small, the distribution of the PW density function estimators

f̂ PWi ðxjyiÞ; i ¼ 1; 2; is highly skewed. This phenomenon explains the poor accuracy of

the asymptotic approximation EPPW
N given in (5.1). Also, Raudys [117] performed a

simulation study with multivariate spherical Gaussian data which shows that
dependent on the dimensionality p; the distance between the pattern classes d; and
the value of the smoothing parameter t; the quantity EPPW

N tends to the asymptotic

error PPW
N ðtÞ at the rate of N�1=3; N�1=2; or even N�1: Theoretically, and via a Monte

Carlo simulation study, Raudys [116,119] showed that the training-sample size

required to achieve a specific value of EPPW
N =PPW

N grows exponentially as a function

of the dimensionality p at the rate

½aðEPPW
N =PPW

N ; tÞ�p; ð5:2Þ

where ratio k ¼ EPPW
N =PPW

N is the learning quality parameter given in Section 3.

However, the function aðk; tÞ must be determined by trial and error from
experiments when the necessary parameters are unknown.

A practical method of determining topt for the classifier PW was proposed by

Raudys [114] and Raudys and Jain [126]. This method is to approximate topt by

determining the smoothing parameter t that corresponds to the minimum leave-one-
out conditional PMC estimate evaluated over a finite number of smoothing
parameter values ti; i ¼ 1; 2;y; r: However, this method was quite computationally
intense. Therefore, for estimating the classification error in a high-dimensional

feature space, Raudys [114] proposed calculating the distances D
ij
ab ¼ ðxij �

xabÞ0ðxij � xabÞ between a pair of training vectors, xij and xab; to determine the

contribution for all r nonparametric density estimates K
D

ij

ab

t1

� �
;K

D
ij

ab

t2

� �
;y;K

D
ij

ab

tr

� �
:

Thus, utilizing this approach, one computes the distance D
ij
ab only once and,

therefore, lessens the computational demand.
When the measurement feature vectors are dependent and categorical, each taking

kj distinct states or values, the conventional statistical classification rule is a

multinomial-based rule (see [16,77]). To design this type of classifier where there are

m ¼ Qp
j¼1 kj possible categories, one must estimate m conditional probabilities pij ;

j ¼ 1; 2;y;m; for each pattern class. Matrosov [82] obtained several error bounds
for the conditional PMC of a multinomial-based classifier.

In [46,104,123], exact expressions for the expected PMC and the expectation of the
resubstitution error-rate estimator were derived, and these expectations were
tabulated for a model of an unfavorable distribution of the values p11;y; p2m (see
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Š. Raudys, D.M. Young / Journal of Multivariate Analysis 89 (2004) 1–3518



also [123, Section 3.8]). The training-sample sizes necessary to achieve a given
learning quality grow exponentially with an increase in the dimensionality of the
discrete feature vector p; as in the expression (5.2) for the PW classifier, provided
the number of states kj is the same for all features. The analysis indicates that for the

realistic distribution of the values p11;y; p2m; the multinomial classifier can be
designed using comparatively small training-sample sizes.

6. Minimum empirical-error linear classifiers

An alternative approach to the parametric-based plug-in SDA is to determine a
linear classification rule of the form

gALðxÞ ¼ w0 þ
Xp
i¼1

wixi; ð6:1Þ

where one estimates the classifier weights, or coefficients, w0 and w ¼
ðw1;w2;y;wpÞ0 by minimizing an empirical error rate, such as the resubstitution

error-rate estimate P̂R or some other empirical loss function. Minimization of the
standard sum-of-squares loss function (adaline algorithm, [158])

sse ¼
X2
i¼1

XNi

j¼1

ðyij � ðw0xij þ w0ÞÞ2; ð6:2Þ

where yij is equal to either �1 or 1 (depending on the class membership of xijÞ can
lead to the SLDF [70]. However, the loss function (6.2) does not minimize the
number of misclassifications in the training set.

Smith [141] changed the quadratic loss function and suggested two modifications
of the standard sum-of-squares cost functions: a relaxation and a fixed increment
algorithm where distant-atypical observations have a smaller contribution to the loss
function. In artificial neural network training [53,123], one uses the following
modification of the quadratic loss function:

sse ¼
X2
i¼1

XNi

j¼1

ðyij � f ðw0xij þ w0ÞÞ2;

where f ðcÞ is a nonlinear activation function, such as the sigmoid function f ðcÞ ¼
1=ð1þ expð�cÞÞ; that varies between 0 and 1. While minimizing the cost function of
a nonlinear single-layer perceptron classifier by means of an iterative-gradient-
descent optimization algorithm, one can obtain seven known statistical classification
rules. These seven statistical classifiers are (1) the EDC, (2) the SRLDF, (3) the
SLDF, and (4) its modification using the pseudoinverse of the pooled-sample
covariance matrix, (5) a robust linear classifier, as well as (6) the minimum empirical
error, and (7) maximum margin classifiers [122,123]. References to a dozen other
statistical procedures that obtain the minimum empirical error classifier can be found
in [121].
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As in the parametric-based classifier design approach, the conditional
PMC of the classifier, denoted by PN ; depends on both the training-sample sizes
N1; N2 and the dimensionality p: The first result concerning this topic was published
by Widrow and Hoff [158], who concluded that the sample size required to achieve a
given signal to noise ratio for the adaline-type algorithm should increase
proportionally to the number of inputs. Smith [142] analyzed the relaxation and
fixed increment algorithms and derived asymptotic expressions for the expected
PMC that are similar to those derived by Efron [29]. Smith concluded that these two
algorithms are more sensitive to the training-sample size than the standard adaline
algorithm.

Due to the nonlinearity of the loss function, one encounters great difficulty in
obtaining analytical expressions for the error rate similar to the parametric classifiers
based on multivariate Gaussian pattern classes. A number of bounds for the actual
and estimated error rates of the minimum empirical-error classifier were obtained by
Vapnik and Chervonenkis [154,155] and Vapnik [152]. One such upper bound on the
conditional PMC of (6.1) is

PNo P̂R þ pðlnðn=pÞ þ 1Þ � ln Z
2n

� �

� 1þ 1þ 4nP̂R

pðlnðn=pÞ þ 1Þ � ln Z

� �1=2 !
ð6:3Þ

with probability 1� Z; ðn ¼ N1 þN2Þ:
The upper bound (6.3) has been obtained for the least-favorable distribution of

training-pattern vectors and results in a very pessimistic estimate of the number
of samples required to adequately train the classifier. Therefore, a number of
modifications of this bound have been suggested. E.g., Cherkassky and Mulier [13,
Section 4.3.1] propose that one use

PNo P̂R þ a1pðlnða2n=pÞ þ 1Þ � ln Z
2n

� �

� 1þ 1þ 4nP̂R

a1pðlnða2n=pÞ þ 1Þ � ln Z

� �1=2 !
;

where the constants a1; a2 must be in the range 0oa1p4; 0oa2p2: Unfortunately,
for actual real-data classification problems, good empirical values for a1
and a2 are unknown. Cherkassky and Mulier also noted that the above bounds
are tighter when the training set size N is large. Both bounds mentioned agree with
conclusions that follow from asymptotic analysis of the parametric rules. Namely,
the increase in the expected error rate depends on the ratio N=p: The reader can find
more details on this topic in the original papers by Vapnik and Chervonenkis
[154,155], and in booksa by Vapnik [152,153], Vidyasagar [156], and Cherkassky and
Mulier [13].

Raudys [120,121] derived an asymptotic approximation for the expected PMC (the
generalization error) of a linear zero empirical error (ZEE) classifier for a specific
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input data model. He assumed the data model configuration of two
spherical multivariate Gaussian pattern classes Nðl1; IÞ and Nðl2; IÞ and

training-sample sizes N1 ¼ N2 ¼ N; and analyzed the hypothetical randomized
training scenario. For this training method one repeatedly generates many

random discriminant hyperplanes w0 þ w0x ¼ 0; where w ¼ ðw1;w2;y;wpÞ0;
according to a certain prior density function cpriorðw0;wÞ: One then selects

those discriminant hyperplanes that classify the training-data vectors without

error (i.e., P̂R ¼ 0Þ: Researchers have considered two types of prior densities
cpriorðw0;wÞ in order to obtain numerical values of the expected PMC:

(1) the multivariate Gaussian density and (2) the density of the weight vector of
the SEDC classifier trained on additional data sets. The analysis of the second model
is motivated by the fact that after the first learning iteration, a single-layer
perceptron can realize the decision boundary of the SEDC [122,123]. Use of the
Gaussian prior implies that no additional information is used to design this type of
classifier.

For the first training model, where the prior distribution of the weights is
spherically Gaussian, the expected PMC was calculated from the exact theoretical
formulae [121,124]. To compare results with formulae for the parametric classifiers
presented in a very simple way (Eqs. (3.3), (3.7), and (3.10)), Raudys [121] used the
tabulated data to approximate the expected PMC for the ZEE classifier by means of
the similar formula

EPZEE
N EF �d

2
1þ ð1:6þ 0:18dÞ p

N

� �1:8�d=5
� ��1=2

 !
: ð6:4Þ

This approximation is comparable to the expected PMC approximations (3.2),
(3.7), and (3.10). Simple but accurate, asymptotic expressions for the ZEE classifier
was proposed by Diciunas and Raudys [24] and Diciunas [23]

EPZEE
N EF �d

2

� �
þ 1

4
F

d
2

� �
p

N
: ð6:5Þ

In addition, exact analytical formulae for expected PMC of linear nonzero
empirical error and ZEE classifiers with arbitrary margin width were derived [23].
Upon examination of numerical values calculated from these expressions, one can
see that in the very small training-sample size cases, the ZEE linear-classifier
approach outperforms the SLDF.

During the last dozen years, considerable attention was given to the
complexity versus sample size problems in the artificial neural network
literature. Researchers have derived a number of asymptotic formulae
for the expected classification error by utilizing different mathematical
and theoretical physics techniques. These techniques include the double
asymptotic approach (thermodynamical limit), the random search optimization
procedure, the replica symmetry technique, and an annealed approximation
method [3–5,47,52,76,90].
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7. Estimation of the classification error rate

Estimation of the conditional PMC of a classifier constructed from sample
data is one of the most important aspects of designing any discrimination
algorithm. The simplest error-rate estimator is to classify test observations to
determine the empirical frequency of misclassifications. This method is called

the hold-out error counting estimator, which we denote by P̂H: If the training
samples are used to evaluate the error rate instead of a set of test
data vectors, this error-rate estimator is called the resubstitution error-counting

estimator, denoted by P̂R: Unfortunately, for small training-sample sizes, one
adapts to training data, and the resubstitution error-rate estimator
becomes optimistically biased. A number of alternative conditional PMC
estimation methods have appeared in the discriminant analysis and
statistical pattern recognition literature [30,39,43,50,73,89,147]. The most
popular unbiased conditional PMC estimator is the hold-out, or cross-validation,
method. However, when the training-sample size is small relative to the
feature dimensionality p; an experimenter takes a large risk by splitting the
available data into training and hold-out samples.

An alternative to the hold-out method is the leave-one-out error-rate

estimator P̂L proposed by Lachenbruch and Mickey [73]. This estimator
consists of creating all possible classifiers of interest using n� 1 observations,
applying each classifier to the corresponding hold-out observation, and then
counting the proportion of the hold-out observations which are misclassified.
In the Soviet statistical classification literature, this procedure was known
as the sliding egzam conditional PMC estimator and was proposed by
Brailovskij [11]. In a generalization of this method, one skips subsets of training
vectors from the training data sequentially and uses these subsets to estimate the
classification error. In the pattern recognition literature, this approach is known as
the rotation method. In the ANN literature it is known as the k-fold cross-validation

method.
Another well-known classifier-performance estimator is a bootstrap error-rate

estimator, proposed by Efron [30]. The bootstrap conditional PMC estimate is
obtained if one subsamples r times from a random training sample of size Ni; i ¼
1; 2; and then uses these subsamples to estimate the mean difference D between the

resubstitution estimated error rate P̂Ra and the conditional estimated error rate P̂Na:
The resulting bootstrap bias estimator is

#DB
NR ¼ 1

r

Xr
a¼1

ðP̂Na � P̂RaÞ: ð7:1Þ

The bias estimator #DB
NR is then added to the resubstitution error-rate estimator P̂R

to reduce the optimistic bias of the resubstitution estimator. An early analog of this
error-rate estimation technique was proposed by Pinsker [101].

Researchers have thoroughly studied parametric error-rate estimators for the two-
group Gaussian population model with common covariance matrices. The
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estimators are of the form

P̂F
Method ¼ Fð�D̂ðMethodÞ=2Þ; ð7:2Þ

where F are the standard normal cumulative distribution function and various error-

rate estimators utilize distinctly different Mahalanobis-distance estimates D̂ðMethodÞ:
For the D-method given in (7.2), one utilizes an estimator of the Mahalanobis
distance of the form

D̂2 ¼ ð %x1 þ %x2Þ0S�1ð %x1 � %x2Þ:
Because the estimator D̂2 is biased, a number of modifications to several

parametric error estimates have been suggested. The Western research on this topic
is summarized in a number of review papers and books mentioned above. Enukov
[31,32] analyzed the performance of a sample Mahalanobis-distance-based

parametric error-rate estimator P̂F
D ¼ Fð�D̂=2Þ for the SLDF asymptotically when

Ni-N; i ¼ 1; 2; and p-N and found it to be biased:

EP̂F
DEF �d

2
1þ 2p

N2d2

� �
2N

2N � p

� �1=2 !
: ð7:3Þ

He proposed an unbiased estimate of the expected classification error based on
expression (3.8) of the form

P̂F
unbiased ¼ F �D̂

2
1þ 2p

N2D̂2

� �
2N

2N � p

� �
:

Bulygin [12] extended Enukov’s results to the many-categories case (k pattern

classes). Asymptotic expansions of the first and second moments of P̂R; P̂H; and P̂L

in terms of 1=Ni; i ¼ 1; 2; for regular pattern-class densities were presented in [27].
Raudys [112] considered the resubstitution error-counting estimator and showed

that for the SEDC, as both N-N and p-N;

EP̂Fn

R EEP̂Fn

D EF �d
2

1þ 2p

N2d2

� �1=2
 !

ð7:4Þ

if the common pattern-class covariance matrix is known. Also, for the SLDF
Pivoriunas and Raudys [102] considered the resubstitution method and found that

EP̂F
REEP̂F

D if the common pattern-class covariance matrix is estimated. For both the

statistical classifiers SEDC and SLDF, the expectation of the LOO conditional PMC
estimator converges to the asymptotic expected PMC expressions (3.3) and (3.7),
respectively. Comparison of expressions (7.3) and (7.4) with (3.2) and (3.7),
respectively, shows that for the EDC and SLDF constructed with large training-

sample sizes, one can see that EP̂F
D and EP̂F

R are symmetric with respect to the

asymptotic PMC, PN: Similar observations were made for other classification rules

[5]. Thus, the expressions P̂n
N ¼ P̂RþP̂L

2
and P̂nn

N ¼ kP̂R have been suggested as

estimators of the asymptotic PMC, PN: An entity EP̂N ¼ ðk2ÞP̂R has been suggested
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as an estimator of the expected PMC, where k ¼ EPN=PN is the learning ratio that
can be determined from asymptotic expansions, exact formulae, or tables [128].

The dispersion of different error-rate estimators is also very important. For

parametric estimators such as the D-method, P̂F
D ¼ Fð�D̂=2Þ; one should consider

that the sample Mahalanobis distance D2 is a noncentral F random variable. Using
the first terms of the Taylor expansion, one can show that

V ½P̂F
D� ¼

fðd=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TmTSÞ2

q
16N

TSðd2TmTS þ 8Þ: ð7:5Þ
Similar expressions can be found for other more sophisticated parametric estimates
[30–32,73,89]. From theoretical analysis and simulation studies, Raudys and
Vaitukaitis [133] also concluded that the variances of four error-counting estimators
(the resubstitution, hold-out, LOO, and bootstrap bias-corrected) are all well
approximated by

VðP̂iÞEEðP̂iÞð1� EðP̂iÞÞ
n

; ð7:6Þ

where P̂i; i ¼ 1; 2; 3; 4; is one of four error-rate estimators given immediately above,
E denotes the expectation operator, and n is the number of observation vectors
utilized to calculate the number of misclassifications.

Expression (7.6) explains why the resubstitution error-rate estimator has the
smallest variance when compared to the three other nonparametric methods. In
general, the larger the mean value of the error-rate estimator, the larger its variance.
Expressions (7.6) and (7.5) also yield conditions where the variances of the
parametric-based conditional PMC estimators are smaller than the nonparametric
(error-counting) estimators. These facts, combined with the variance of the
conditional classification error given in (3.11), constitute theoretical evidence that
the variance of the bootstrap error-rate estimator is as large as the variance of the
LOO estimator. Raudys and Vaitukaitis [133] and Raudys [118] also determined that
the variance of the bias-correcting term (7.1) of the bootstrap estimator is

Vð #DB
NRÞE

PNð1� PN=k2Þ
nrk2

; ð7:7Þ
where k ¼ EPN=PN; the learning quantity discussed above.

Expression (7.7) can be used to determine r; the number of bootstrap subsamples.
A simple calculation shows that 10oro20 is usually a sufficiently large number of
bootstrap subsamples to estimate the bias correction term.

8. Model complexity and feature subset selection

Rao [106] first emphasized the problems that can arise in cases where the number
of training samples is close to the number of dimensions. Allais [2] and Hughes [55]
were the first to formulate and analyze the problem of classifier-performance
dependence on the dimensionality and training-sample sizes. The dependency was
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also explored by Van Ness and Simpson [151] and Van Ness [149,150]. With an

increase in the number of features p and fixed training-sample sizes N1 and N2; the

expected classification error EPF
N diminishes at first, then levels off and afterward

begins to increase. This relationship between the training-sample size and feature

dimension is known as the ‘‘peaking phenomenon’’ of a statistical classifier. In the

former USSR this classifier property was first discovered by Lbov [75].
A similar conclusion is valid for the model (the classifier) complexity. From

expressions (3.3) and (3.7), one can see that the SLDF is more sensitive to the

training-sample size N than the SEDC and that PE
NXPF

N: Therefore, if the training

ratios Ni=p; i ¼ 1; 2; are small, one may prefer to use the simpler SEDC, which does

not require the estimation of R and, therefore, has fewer parameters to estimate than

the SLDF. On the other hand, if Ni=p; i ¼ 1; 2; are large, one may prefer the more

complex SLDF, which includes directional information in the estimated covariance

matrix S; as the statistical classifier of choice. The intersection of the expected error

rates EPF
N and EPE

N ; when plotted versus the training-sample size N; resembles

scissors and, therefore, this phenomenon was later called the scissors effect.
Apparently, Raudys [110] and Kanal and Chandrasekaran [59] were the first to

formulate the concept of matching the classifier complexity with the training-sample

size and data dimensionality. Vapnik and Chervonenkis [155] formulated the
necessity of choosing the classifier’s model complexity in accordance with the

training-sample size as a principle of structural risk minimization. Here, a sequence

of the classifiers of increasing complexity is tested. The model is selected according to
the smallest sum of the empirical error and an analytically determined penalty term.

The problem of matching the classifier complexity with the training-sample size is

also known as a ‘‘bias variance dilemma,’’ or ‘‘Occam’s razor,’’ among other names
(see, e.g., [9]).

A considerable amount of research has been done by former Soviet Union
researchers concerning feature-space dimension reduction, or classification-rule

complexity reduction. Dimension reduction has long been proposed as necessary
when the training-sample sizes are small in comparison with the feature

dimensionality. One method of combating this ‘‘curse of dimensionality’’ is to

perform some type of variable selection to decrease the data dimensionality and,
therefore, supposedly decrease the conditional PMC [75]. We shall refer to this

variable selection process as feature-subset selection.
An alternative to feature selection is to design a small number of simple-structured

classifiers and fuse their decision by means of a trainable fusion rule. This approach
is popular in the West under the name multiple classification systems [69], combining

classifiers, etc. In the former Soviet Union, this research direction began in the early
1980s. Results of the first decade of research in this area are summarized in the

Rastrigin and Erenstein monograph [107].
In the West many algorithms have been proposed for feature subset selection in

statistical discriminant analysis. The most widely researched algorithms have been

for parametric classification algorithms and are based on statistical hypothesis tests.

These methods are usually referred to as stepwise variable selection methods. Papers
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concerning stepwise variable selection algorithms include Brailovskij [11], Lbov [74],
Urbakh [148], Enukov [31], McKay and Campbell [83,84], Costanza and Afifi [17],
Costanza and Ashikaga [18], Farver and Dunn [34], Habbema and Hermans [48],
McLachlan [88], Fatti and Hawkins [35], Ganeshanandam and Krzanowski [40],
Tcheponis et al. [146], and Aivazyan et al. [1].

Both the tasks of model selection and feature subset selection are performed using
an inexact sample-based performance estimator. In the model selection problem, we
choose the important features using a validation set to evaluate the performance of

the competing features or variates [33]. Therefore, Pselection
true ; the actual performance

of the model selected (measured on an independent test set) is worse than Pselection
apparent;

the ‘‘apparent’’ performance of this model measured on the validation set. The
problem of the adaptation bias in feature subset selection was first considered in

Meshalkin [92]. The concepts of apparent and true selection errors Pselection
true ; and

Pselection
apparent; respectively, were introduced in [115].

Raudys [115] explored the feature-subset-selection problem assuming the pattern-
class models of two multivariate spherically Gaussian classes Nðl1; IÞ and Nðl2; IÞ;
where I is the p-dimensional identity matrix and li ¼ ðmi1; mi2;y; mipÞ0; i ¼ 1; 2: He

further assumed that the individual feature-quality values, Dmj ¼ m1j � m2j ; were

Nð0; s2Þ random variables. Feature subsets of size q ðq5pÞ were selected with
estimated feature-quality values D %xj ¼ %x1j � %x2j : Assuming this model, he showed

that as p-N and N ¼ N1 ¼ N2-N; the expected PMC tends to

EPSelection
N EF

�d
2

1þ 2q

d2N
� d21
s2

� ��1=2
 !

; ð8:1Þ

where d21 is the mean feature-quality value (a variance of DmjÞ in the case where the

exact values Dlj are used to select the q best features and d2 ¼ qd21 is the squared

Mahalanobis distance if the ideal feature-subset selection is performed.

In (8.1) the term 2q=ðd2NÞ represents the increase in the expected PMC due to

suboptimal training of the classifier (cf. (8.1)–(3.3)). The term d21=s
2 is greater than

one and measures the increase in the expected PMC due to imperfect feature

selection. Raudys [115] compared numerical values of the terms 1þ 2q=ðd2NÞ and

d21=s
2 and performed simulation studies to demonstrate that the contribution of the

term d21=s
2 to expression (8.1) is usually larger than the term 1þ 2q=ðd2NÞ: Thus,

one can now understand the interesting and little-known result that for simple-
structured classification rules, an inaccurate feature-subset selection process
increases the expected PMC more than imperfect training of a simple classifier.
During the last few years, this aspect of the model selection problem has attained
considerable attention in a portion of the scientific community and is known by the
phrase ‘‘there is no free lunch’’ (e.g., a heated debate has occurred in Neural

Computation). One cannot select the best model using only one data set. Additional
information (validation set, hypotheses about the data structure, etc.) must be
employed to make the correct model selection decision.
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Serdobolskij [138,139] obtained important fundamental results on the efficacy of
feature-subset selection. He analyzed a pattern-class model in which the observation
vector x is composed of independent blocks of variables x1; x2;y; xh: That is,

the pattern-class density models are of the form f ðxjyiÞ ¼ f ðx1; x2;y; xhjPiÞ ¼Qh
j¼1 fiðxjjyiÞ: Serdobolskij used this pattern-class density model and the discrimi-

nant function

gðxÞ ¼
Xh
i¼1

ZðujÞ ln fjðxjj#y1jÞ
fjðxjj#y2jÞ

;

where fiðxj j#yijÞ is the ith pattern-class density of the observation vector xj and #yij is
the estimator of the ph-variate pattern-class density parameter vector corresponding

to the ith class. Also, the jth block is uij ¼ 1
2
nB̂j; where B̂j ¼

R
ln

fjðxj j#y1jÞ
fjðxj j#y2jÞðfjðxjj

#y1jÞ �
fjðxjj#y2jÞÞmðdxÞX0 is a separability measure between the two pattern classes, ZðujÞ is
a weighting function of contributions of separate blocks of variables, and mðdxÞ is an
absolutely continuous probability measure. If ZðujÞ ¼ 0 or 1, we have feature

selection, and for continuous ZðujÞ we have feature weighting.

Serdobolskij [138, Theorem 6 and Example 2] assumed that the individual
contributions uj are random variables with cumulative distribution function RðuÞ
and found an optimal weighting function ZoptðuÞ ¼ sðuÞ

pðuÞ yielding a minimal expected

PMC

EPN ¼ Fð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðZ0Þ

p
=2Þ;

where MðZ0Þ ¼ 2h
n

RN
0

s2ðuÞ
pðuÞ du; sðuÞ ¼ R b2f bphþ2ðuÞ dRðb2Þ; pðuÞ ¼ u

R
f bphðuÞ dRðb2Þ;

and f bmðuÞ is the noncentral chi-square density with m degrees of freedom and

noncentrality parameter b: Serdobolskij proved that the contribution’s density function,

dRðb2Þ ¼ g
2p

� �ph=2
exp �gb2

2

� �
a~bb;

where~bbARph ; j~bbj ¼ b; and g40; is the only density function for which weighting does
not reduce the classification error. Thus, to obtain the minimal error rate, we must
choose ZoptðujÞ ¼ constant: Accordingly, the Gaussian distribution of the individual

contributions uj is only one model where no gain in the model (feature) selection can be

obtained. In a number of theorems and examples, Serdobolskij [138,139] extended these
results to feature selection and error-rate estimation.

Bulygin [12] also investigated the distribution of the separability estimator #V;
composed of pairwise sample Mahalanobis distances, and proposed several
optimality criteria for the determination of the discriminatory power of single
features, determination of the optimal dimensionality for finite training-sample sizes,
and selection of informative feature subsets. One such optimality criterion is

Gðfk; kÞ ¼ n� k � 2

n� 2k � 1
#Vð #V� kD�1

n Þ�1ð #Vþ ðn� 3ÞD�1
n Þ;
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where Dn ¼ ½ðdnijÞ� with dnij ¼ ndij � NiNj

nþk�2
; where n ¼Pk

i¼1 Ni; dij is Kronecker’s

delta and fk ðkopÞ is the particular subset of features used in the calculation of the
pairwise estimated Mahalanobis distances.

Raudys [115] and Raudys and Pikelis [129] considered the general problem of
model selection using sample-based conditional error-rate estimators. Expected

values of the actual, Pselection
true ; and the apparent, Pselection

apparent; classification errors were

obtained and tabulated. The actual error, Pselection
true ; decreases as the number of the

models increases. The difference between Pselection
true and Pselection

apparent increases with m;

where m is the number of models compared empirically. In the finite validation-set-
size case, little is gained when m is chosen to be large. Thus, the studies referred to
immediately above demonstrate the dubious nature of an estimated decrease in the
expected PMC supposedly attained when one performs feature-subset or model
selection. This idea is somewhat contradictory to the idea familiar in the western DA
literature of using subset selection to obtain better performance of a classifier
designed with a small or limited training-sample size. Estes [33] and Murry [95] first
considered the feature-selection problem experimentally and cautioned against
choosing m to be large.

9. Comments

We have attempted to briefly present some of the more important past and current
results derived by former Soviet Union researchers in DA and SPR. We have
emphasized the findings of these scientists in error-rate analysis because their
approach to deriving error-rate approximations differs from that taken in the West.
Of course, we have excluded many interesting DA and SPR topics and important
results studied and derived by these investigators.

Interestingly, the work of Western DA and SPR researchers appears to be better
known by their former Soviet Union counterparts than vice versa. This fact is easily
understood in light of the difficulty of Western DA and SPR researchers in obtaining
the pertinent research literature in the Soviet Union-based journals and books. One
can only hope that with the advent of sophisticated electronic mail systems and
advanced computer technology, researchers in both the East and the West will
become more aware of each others’ research, not only in DA and SPR, but also in all
other statistical science topics.
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Š. Raudys, D.M. Young / Journal of Multivariate Analysis 89 (2004) 1–35 31



[76] E. Levin, N. Tishby, S.A. Solla, A statistical approach to generalization in layered neural networks,

Proc. IEEE 78 (1990) 2133–2150.

[77] H. Linhart, Techniques for discriminant analysis with discrete variables, Metrika 2 (1959)

138–140.

[78] W.L. Loh, On linear discriminant analysis with adaptive ridge classification rules, J. Multivariate

Anal. 53 (1995) 264–278.

[79] W.L. Loh, Linear discrimination with adaptive ridge classification rules, J. Multivariate Anal. 62

(1997) 169–180.

[80] Ya.P. Lumelskij, Unbiased consistent estimates of probabilities in the case of the multivariate

normal distribution, Vestnik of Moscow State Univ. 6 (1968) 14–17 (in Russian).

[81] V.R. Marco, D.M. Young, D.W. Turner, The Euclidean distance classifier: an alternative to the

linear discriminant function, Commun Statist.—Comput. Simulations 6 (1987) 485–505.

[82] V.L. Matrosov, Optimal algebraic algorithms based on calculation of estimates, Rep. Acad. Sci.

USSR 262 (4) (1982) 818–822 (in Russian).

[83] R.J. McKay, N.A. Campbell, Variable selection techniques in discriminant analysis, I. Description,

British J. Math. Statist. Psychol. 35 (1982) 1–29.

[84] R.J. McKay, N.A. Campbell, Variable selection techniques in discriminant analysis, II. Allocation,

British J. Math. Statist. Psychol. 35 (1982) 30–41.

[85] G.J. McLachlan, An asymptotic expansion for the variance of the errors of misclassification of the

linear discriminant function, Austral. J. Statist. 14 (1972) 68–72.

[86] G.J. McLachlan, An asymptotic expansion of the expectation of the estimated error rate in

discriminant analysis, Austral. J. Statist. 15 (1973) 210–214.

[87] G.J. McLachlan, The asymptotic distributions of the conditional error rate and risk in discriminant

analysis, Biometrika 61 (1974) 131–135.

[88] G.J. McLachlan, On the relationship between the F test and the overall error rate for variable

selection in two-group discriminant analysis, Biometrics 36 (1980) 501–510.

[89] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, Wiley, New York,

1992.

[90] R. Meir, Empirical risk minimization versus maximum-likelihood estimation: a case study, Neural

Comput. 1 (1995) 144–157.

[91] L.D. Meshalkin, Assignment of numerical values to nominal variables, Statist. Problems Control 14

(1976) 49–56 (in Russian).

[92] L.D. Meshalkin, Theory of statistical analysis of a chronic progressive disease, USSR Doctoral

Dissertation, Moscow State University, Moscow, 1997 (in Russian).

[93] L.D. Meshalkin, V.I. Serdobolskij, Errors in classifying multivariate observations, Theory Probab.

Appl. 23 (1978) 772–781 (in Russian).

[94] D. Morgera, D.B. Cooper, Structurized estimation: sample size reduction for adaptive pattern

classification, IEEE Trans. Inform. Theory 23 (1977) 728–741.

[95] G.D. Murray, A caution note on selection of variables in discriminant analysis, Appl. Statist. 26

(1977) 246–250.

[96] M. Okamoto, An asymptotic expansion for the distribution of linear discriminant function, Ann.

Math. Statist. 34 (1963) 1286–1301 (Correction Ann. Math. Statist. 39 (1968) 1358–1359).

[97] T.J. O’Neil, A general distribution of the error rate of a classification procedure with application to

logistic regression discrimination, J. Amer. Statist. Assoc. 75 (1980) 154–160.

[98] M. Opper, D. Haussler, Calculation of the learning curve of Bayes optimal classification algorithm

for learning perceptron with noise, Proceedings of the Fourth Annual ACM Conference on

Computer Learning Theory, 1991, pp. 75–87.

[99] V. Pikelis, The errors of a linear classifier with independent measurements when the learning sample

size is small, Statist. Problems Control 5 (1973) 69–101 (in Russian).

[100] V. Pikelis, Comparison of methods of computing the expected classification errors, Automat.

Remote Control 5 (1976) 59–63 (in Russian).

[101] I.Sh. Pinsker, Estimation of learning method and learning sample, Simulation Automat. Anal.

Electrocardiograms (1973) 13–23 (in Russian).

ARTICLE IN PRESS
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Š. Raudys, D.M. Young / Journal of Multivariate Analysis 89 (2004) 1–3534



[149] J.W. Van Ness, Dimensionality and classification performance with independent coordinates, IEEE

Trans. System Cybernet. SC-7 (1977) 560–564.

[150] J.W. Van Ness, On the effects of dimension in discriminant analysis for unequal covariance

populations, Technometrics 21 (1979) 119–127.

[151] J.W. Van Ness, C. Simpson, On the effects of dimension in discriminant analysis, Technometrics 18

(1976) 175–187.

[152] V.N. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer, Berlin, 1982.

[153] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin, 1995.

[154] V.N. Vapnik, D.Ya. Chervonenkis, Algorithms with full memory and recurrence algorithms in the

problem to train pattern recognition, Automat. Remote Control 4 (1968) 95–106 (in Russian).

[155] V.N. Vapnik, D.Ya. Chervonenkis, Theory of Pattern Recognition—Statistical Learning Problems,

Nauka, Moscow, 1974 (in Russian).

[156] M. Vidyasagar, A Theory of Learning and Generalization, Springer, London, 1997.

[157] A.J. Viollaz, A.M. Sfer, S.M. Salvatierra, An approximation of the unconditional error rates of the

sample linear discriminant function, Comm. Statist.—Theory Methods A 24 (1995) 1941–1969.

[158] B. Widrow, M.E. Hoff, Adaptive switching circuits, WESCON Convent. Rec. 4 (1960) 96–104.

[159] F. Wyman, D.M. Young, D.W. Turner, A comparison of asymptotic error rate expansions for the

sample linear discriminant function, Pattern Recognition 23 (1990) 775–783.

[160] V.I. Zarudskij, Classification of normal vectors with a simple structure in multidimensional space,

Applied Multivariate Statistical Analysis, Nauka, Moscow, 1978, pp. 37–51 (in Russian).

[161] V.I. Zarudskij, The use of models of simple dependence problems of classification, Statist. Problems

Control 38 (1979) 33–75 (in Russian).

ARTICLE IN PRESS
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