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Abstract

In this work we discuss the design of a novel non-linear mapping method for visual classi®cation
based on multilayer perceptrons (MLP) and assigned class target values. In training the perceptron, one
or more target output values for each class in a 2-dimensional space are used. In other words, class
membership information is interpreted visually as closeness to target values in a 2D feature space. This
mapping is obtained by training the multilayer perceptron (MLP) using class membership information,
input data and judiciously chosen target values. Weights are estimated in such a way that each training
feature of the corresponding class is forced to be mapped onto the corresponding 2-dimensional target
value. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the interdisciplinary ®eld of biomedical engineering, medical doctors may often work in
cooperation with informatic engineers. One of the aims of such a cooperation is to design
``wizards'' of data analysis and classi®cation for physicians to be used in the diagnosis and
evaluation of the pathologies.

Diagnostic tools have biological signals as inputs, and utilize typically lower level signal
processing tools such as spectral analysis, transforms, parameter estimation, discriminant
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analysis, etc. In addition they can make explicit use of knowledge bases, heuristic rules, expert
interactions to classify biological data [1±3]. Among these diagnostic tools, there is often a
need for a classi®cation technique that appeals to the intuition of the physician, that could
potentially incorporate his personal rules and knowledge. Such interactions are instrumental in
building up con®dence and plausibility with these diagnostic aids. More explicitly, interactive
classi®cation techniques are needed that allow a physician to interpret the results easily and
e�ciently. Otherwise, without such interactions, simple classi®cation percentages that the
present pattern recognition methods yield, do not avail the physician of the intuitive grasp of
the problem.
The interaction of the physician becomes possible, if, for example, the data for classi®cation

is presented visually. To this e�ect mapping techniques provide a useful tool for the
visualization of data. It has been proven [4] that interactive classi®er design based on visual
displays gives the user greater insight and con®dence in the classi®cation results. It is also well
known that multivariate data projections can avoid the curse of dimensionality, enable better
visualization of the underlying structure of the data, e.g., put into evidence its clustering
tendency, especially for exploratory data analysis tasks. These techniques can be used as
alternatives to formal classi®cation methods in many ®elds but especially in biomedical
engineering. By formal methods we simply mean those classi®cation methods where the
discriminant surfaces are obtained computationally without any expert interaction.
In this paper, the performance of the proposed mapping and visual classi®cation method will

be illustrated with an application on respiratory sounds.

2. Mapping techniques

Mapping techniques constitute the most frequently used methods for visualization of data,
for visual assessment of potential structures and class dependencies, and for merging human
judgement with formal data processing techniques. A mapping operation consists of a
transformation of d-dimensional vectors onto a plane. The ®delity of a mapping method is
de®ned as the amount of peculiarities retained after the dimensionality reduction. The mapping
algorithm may be de®cient in preserving all the information in d-dimensional data. Therefore
the choice of the method becomes crucial in speci®c applications. Each mapping method is
associated with a criterion, which is the measure of ®delity, to be optimized.
Mapping methods can be classi®ed as linear and non-linear. In linear mapping techniques,

linear transformations are used in order to map the d-dimensional pattern space into 2-
dimensional space. On the other hand, a linear transformation that enables the transition from
the multidimensional space to 2-dimensional space does not exist for non-linear methods.
Some of the mapping methods require for their operation that the user enter several

parameters, prelabel the classes, cluster or classify the data ®rst, it is then clear that the choice
of the mapping that ®ts the data is not an easy matter. A summary of some features of the
mapping techniques is given in Table 1 in order to clarify the di�erences between methods
rather than to establish a priority among them.
The most widely used linear and non-linear mappings are brie¯y summarized below. A

detailed survey of mapping techniques can be found in [4, 5].
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2.1. Linear mappings

Given a set of d-dimensional feature vectors, {xn}n = 1, . . . ,N, the linear map consists of the
operation

yn � Axn � b �1�
where A = [a1

0,a2 0] 0 is a 2-by-d transformation matrix, `` 0'' denotes the transpose, and b is a
two-component vector added for the generalization of the expression. The criterion to obtain
a1 and a2 speci®es the type of the linear mapping. One advantage of linear mappings is that
straight lines in the projection plane correspond to hyperplanes in the higher dimensional
space, so that piecewise linear boundaries drawn by the user can be re¯ected back into decision
hypersurfaces in the original d-dimensional data space.
Well known and widely used linear mapping techniques are brie¯y summarized below.
(i) The principal component mapping is a technique where the principal axes of the sample

covariance matrix in the original space is used. Principal axes are de®ned as the eigenvectors of
the covariance matrix corresponding to its largest eigenvalues. Three versions of mappings exist
depending upon which covariance matrix is being considered. If the total covariance matrix of
the original d-dimensional data without a prespeci®ed labeling on the classes is used, the
resultant mapping is called the total principal component mapping. On the other hand, in the
standardized class conditional mapping and in the class conditional principal component
mapping, two classes exactly are required, and therefore two class conditional covariance
matrices are needed to solve the eigenproblem. The common point in principal component
mappings is that the minimum of the squared error criterion preserves the maximum
information in the projection data.
(ii) The generalized declustering mapping is another linear mapping method for which Fisher

direction, optimal discriminant plane, declustering mapping and extended declustering
mappings represent the four di�erent versions in this group. In all these mappings the Fisher
discriminant is used to enhance the separability between pairs of classes. This method can only
handle two classes in the feature space.
(iii) The least squares mapping is another method that requires prelabeling of the classes in

the original feature space. One can specify more than two classes a priori. If, for example,
there are C classes in the feature space, C class centers are speci®ed on the plane, and
transformation parameters are estimated under the constraint that the images of the feature
vectors on the plane form minimum variance classes around the preselected class centers. This
minimum variance criterion tends to create Gaussian-like con®gurations of sample points in
two dimensions. While this subspace derived from the original space best discriminates
Gaussian classes, in extreme cases it may fail.
(iv) The projection pursuit mapping which is ®rst proposed by Friedman and Tukey [6]

assumes the projection ``produces a dense cluster of points while maintaining the overall spread
of the data''. This method does not make use of prelabeling of the data.

2.2. Non-linear mappings

In non-linear mapping methods, the coordinates of yn are not linearly related to the
coordinates of the original points xn in a d-dimensional space, i.e., a simple analytical
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expression to tie the points in the plane and the corresponding points in the original data space
is not available. The transformation that one searches for is a mapping of the d-dimensional
data onto a plane, which for the sample xn, can be written as:

�zn1,zn2� 0 � f��xn1,xn2, . . . ,xnd � 0�, n � 1,2, . . . ,N �2�
in such a way that each class is transformed into one or more clusters. Non-linear mapping
methods can be divided into four groups.
(i) Sammon's non-linear mapping projects the data space onto a plane by preserving the

distances between original feature vectors in two dimensions. In other words, the sample points
are projected on the plane in such a way that the distances between them are proportional to
the distances between respective original points. The performance of Sammon's mapping
depends upon the sample size and the dimensionality of the data. Its e�ciency decreases with
increases in dimensionality and sample population. Therefore Sammon's mapping is useful
especially when the population is small compared to the dimension of the database.
(ii) The triangulation mapping also tries to preserve distances between samples as in

Sammon's mapping. The most important di�erence, however, is that the triangulation mapping
exactly preserves the distances of a subset of data, while it disregards completely the distances
of the remaining sample set.
(iii) The distance from two means mapping is based on the idea of the Mahalanobis distances

of a feature vector to the means of the two classes. This method can handle only two data
classes.
(iv) The k-nearest neighbor mapping is just a tool for analysing and improving the

performance of a k-nearest neighbor classi®er.
The most important advantage of mapping methods in decision problems is the facility of

graphical tools or ability of human designers to identify patterns and to create robust
separating hypersurfaces. One disadvantage common to all mapping methods in decision
making is that each mapping method has its own speci®c projection, which in turn tends to
insert subjective bias to the results. Another aspect of mapping methods is that the interaction
of human users can turn into a disadvantage due to their subjective biases. These
disadvantages can be alleviated, however, by re-examining the data with the aid of more than
one method, in other words one can cross-validate the classi®cation results. Recall that,
because of their inherent di�erences, di�erent mapping methods produce distinct displays.

3. A new mapping method: multilayer perceptron mapping

Our mapping method consists in training an MLP (multilayer perceptron) in order to
estimate and implement the best non-linear mapping from d-dimensional data to 2-dimensional
targets. In training this perceptron, one may opt to assign more than one target value for each
class as illustrated in Fig. 1. Target values guide the original data to locations where they will
be transformed in the plane, in other words, the target values act as attractors for their class
data. The use of MLPs to emulate a non-linear function is not new. However the novelty of
our approach is that class membership information is used in training this mapping, which
improves the separability between the classes.
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We illustrated the di�erences between MLPs employed for mapping and classi®cation
purposes, respectively, in Fig. 2. The simplest MLP classi®er consists of an input layer and two
layers of processing neurons as shown in Fig. 2b. Each neuron at the output layer is assigned
to one class. On the other hand, an MLP used for data mapping has only two neurons at the
output (Fig. 2a). Notice that in the classi®cation problem the desired output values for the K
output neurons, O1, . . . , OK, are:

O1 O2 O3 . . . OK

for class-1 1 0 0 . . . 0
for class-2 0 1 0 . . . 0

. . .
for class-K 0 0 0 . . . 1

On the other hand, in the data mapping case, the two outputs, z1, z2, for a K class example
problem can be denoted as follows:

Fig. 1. Target values that can be chosen in implementing our MLP based mapping method. Note that, one may

choose more than one target for each of the K classes. Target values only for classes 1, 2 and K are shown
respectively, with 1, 2 and 3 target values.

Fig. 2. (a) MLP for data mapping with two output nodes and h hidden layer nodes, (b) MLP for classi®cation with
K output nodes each for one class.
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z1 z2
for class-1 �two targets� T11�1� T21�1�

T12�1� T22�1�
for class-2 �one target� T11�2� T21�2�

. . .
for class-K �t targets� T11�K � T21�K �

. . .
T1t�K � T2t�K �

Here, the target values are indicated by Ta,b(c) where a = 1, 2 denotes the two coordinates
on the plane, b = 1, . . . , t indexes the multitude of target values for each class, and ®nally
c = 1, . . . , K, is the class membership. Notice that in the above example, the number of target
values in the k classes is taken respectively as [1, 2, . . . , t] with a total of T target values. In
training this mapping algorithm, the target values, Ta,b�c�, are accepted as the desired cluster
centers which are the images of d-dimensional data points on a plane. For example, for a
three-class problem with single target assignments per class, the target values could be,
respectively, (T 11(1), T 21(1)) = (1, 0.5), (T 11(2), T 21(2)) = (ÿ1, 0.5), (T 11(3), T 21(3)) = (0,
0.5), for a subjectively pleasant plot. The user can greatly in¯uence the mapping procedure and
interactively search for the intrinsic structure in data by manipulating the target values.
Another convenient way to initialize the target values in the least squares mapping one can
use:

Tj�c� � �cos�aj �, sin�aj ��, aj � 2p� jÿ 1�
c

, j � 1, . . . , c: �3�

Then the user can interactively reassign objects from one class to another, merge, split or
delete classes, or identify new target values by taking into account the neighborhood
relationships between the classes.

The execution of the non-linear transformation of the d-dimensional data by the MLP is
given as

znj � w0j �
Xh
l�1
�wlj � f�w01 �

Xd
i�1

xniwli ��, j � 1, 2, n � 1, . . . , N �4�

where z nj is one of the two coordinates after mapping of the nth, n = 1, . . . , N, d-dimensional
data point, x ni, h is the number of nodes in the hidden layer, N is the total number of data
points, ``w'' denotes weights of the perceptron, and f(� � �) is a non-linear function. Standard
perceptron training algorithms can be used to train this structure. Notice that the MLP will
have K output nodes for a K-class recognition problem, while for the mapping problem the
number of output nodes is always 2. On the other hand these output values will have as target
values a total of T values.

As in the pattern analysis problems, the advantage of the MLP mapping is that non-linear
relationships in the data are obtained during the training. On the other hand, it shares the
drawbacks presented by other neural networks such as converging to a local minimum,
overtraining, etc. The multilayer perceptron mapping method is non-linear, requires prelabeling
of the classes, and can operate on the multi classes in the original feature space.

E.C° agÆatay GuÈler et al. / Computers in Biology and Medicine 28 (1998) 275±287 281



From the medical diagnosis standpoint, the advantages of the proposed method are that the
targets can be selected to re¯ect the doctor's intuition and in cooperation with them. For
example targets can be chosen to re¯ect their notion of distance between pathologies, or
multiple targets can be selected to account for alternate symptoms of the same pathology. In
fact prototype patients themselves can be selected as targets, whereby the doctor can search for
other patients that map close to the reference patient.

4. Experimental results: a medical diagnostic case

The proposed mapping method has been applied to the classi®cation of respiratory sounds
into three pathology classes. Respiratory sounds are known to provide useful diagnostic
information for various pathologies and anomalies of lungs and airways. Automatic
classi®cation of respiratory sounds is signi®cant in that it provides a computer-aided tool to
auscultation and increases its potential diagnostic value [1].
The lung sounds are highly non-stationary processes as the sound generating mechanisms

change during the course of inspiration and expiration. These sounds show also intrapatient
variability due to ¯ow rate and even posture, as well as interpatient variability. It has therefore
been found useful to partition the record of respiratory cycles into phases and segments.
Recorded signals in a respiration cycle, typically lasting 2±3 s, were divided into a ®xed

number of segments as illustrated in Fig. 3. In this ®gure the ¯ow signal is also superimposed
in order to enable the identi®cation of the so-called respiratory phases. The number of phases
is six re¯ecting the early, mid and late stages of the inspiration and expiration half-cycles. Since
there are six phases, then each phase contains ten consecutive segments. A separate mapping
was applied for each phase feature set which implies that a separate MLP was trained for each
phase. The reason why a separate mapper was used in each phase was to combat the non-
stationarity of the respiratory sounds. The resulting intermediate maps were then re-projected
by a second stage mapper to derive a single image of the patient sound record. Notice that if
the data had been stationary, a single phase, hence a single MLP mapper would have su�ced.
The number of segments was chosen to be 60 for a whole respiration cycle corresponding

each typically to 30±40 ms intervals, or to 150±200 samples given the 5 kHz sampling rate. The
length of these segments is a compromise between being short enough to capture a stationary

Fig. 3. Division of a respiratory cycle into segments and phases, and the choice of training and test segments from
each phase. These operations take place on the respiratory sound signal synchronized with the above ¯ow signal.
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interval on one hand, and long enough to yield statistical signi®cance. Each segment was
characterized by six cepstral coe�cients forming its feature set. These segments in each
respiration cycle were further grouped into six phases, namely, early, mid, late inspiration and
expiration phases.
Measurement records from 18 chronic obstructive patients (class-1), 19 restrictive lung

disease patients (class-2) and 20 healthy subjects (class-3) were used (total of 57 patients) in the
experiments.
The block diagram of the mapping that we used for this particular application is shown in

Fig. 4. As shown in Fig. 4, at the ®rst stage mapping, each phase MLP receives the cepstral
vectors (d = 6) of the segments in the corresponding phase portion. The output, i.e. the
image, for the nth input sample, x n

f, in phase f = 1, . . . , 6 is z n
f, whose components are given

as in Eq. (4). Recall that a separate MLP is trained for each respiratory phase since their
dynamic and sound generating characteristics di�er signi®cantly. Data is run over all training
segments for all the labelled patients, though the patient indices have been omitted in
equations for simplicity. The outputs of the phase MLPs are then combined into a new vector
with 12 components (recall that each z is 2-dimensional):

zn � �z1n,z2n,z3n,z4n,z5n,z6n�:
In order to obtain the image, Zkn, of a whole respiratory cycle of the kth, k = 1, . . . , 57,

patients, a second stage MLP (Fig. 4) is used to map zn into two dimensions using again an
MLP as in Eq. (4) using the same target values as in the ®rst stage. At this stage each patient
is represented by ®ve points, each corresponding to one of the ®ve segments in the phases. In
the ®nal map these segment images are averaged so that the patient is shown only by one 2D
vector:

Fig. 4. Block diagram for mapping the respiratory sound data. For the ®rst stage MLP mapping, the data vector
size is d = 6, and the number of hidden layer nodes are h = 7 while for the second stage d = 12, h = 7.
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wwwk �
1

5

X5
n�1

Zkn, k � 1, 2, . . . , 57 �patients�:

This two-stage mapping and the ®nal averaging over segments helps to control the scatter
due to temporal evolution of the respiratory waveforms. In our experiments with this data, we
have de®ned only one target value, (T 11(c), T 21(c)), c = 1, 2, 3, for each class, though as was
mentioned in Section 3, more than one target could have been de®ned for each class. The
values of the target pairs were chosen as (T 11(1), T 21(1))= (1, ÿ1) for class-1 (obstructive),
(T 11(2), T 21(2)) = (ÿ1, ÿ1) for class-2 (restrictive), and(T 11(3), T 21(3)) = (0, 0.732) for class-
3 (healthy). These target values were kept identical for the 1st and 2nd stage mappings. After
several preliminary mapping experiments, h = 7 hidden units were chosen for each MLP in
both stages (see Fig. 2a).
In order to test the interaction of human observers with the graphical display of the data, we

asked four observers to draw piecewise linear decision boundaries on the images obtained from
the training data (Fig. 5a). As illustrated in Fig. 3, the training and test data were obtained
from alternate segments of the patients' lung sound records. The decision boundaries on the
training data images were then simply ported on the test data images as illustrated in Fig. 5b.
The decision boundaries speci®ed by Observers 1, 2 and 3 resulted in ®ve, four and four errors
in the test image, respectively. Most of the errors were common for all observers. It was

Fig. 5. (a) Mapping images of respiratory sound training data, and decision boundaries speci®ed by three
independent observers, (b) mapping images obtained from the test data with the class boundaries obtained in (a).
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interesting to note that the decision boundaries drawn by the second and fourth observers were

almost the same. The average correct classi®cation performance determined by four observers

on the test image is 92.54%. This result is consistent with our previous classi®cation

experiments. In those experiments the correct classi®cation performance was 89.47% on the

same data set with the cooperation of MLP classi®ers, and furthermore the three misclassi®ed

subjects was found to be common to both visual and pattern recognition methods.

We also mapped the training data with di�erent techniques, but using the same procedure

explained above. In other words the strategy illustrated in Fig. 4 was followed, except that

mapping was executed with techniques di�erent than MLP. These techniques were (1) the

principal component mapping (PCM), (2) the least squares mapping (LSM), (3) the extended

declustering mapping, (EDM) (4) the distance from two means mapping (DF2M). The EDM

and DF2M require two classes in the data while the LSM and PCM are not so constrained.

Thus, we merged class-2 and class-3 into one class and class-1 remained the same while

implementing EDM and DF2M techniques. In EDM, the spread coe�cient [4] was chosen as

3, and in DF2M, class-conditional covariance matrices were assumed unequal. Images obtained

from these four mappings are given in Fig. 6.

When Figs. 5 and 6 are compared visually, one can notice that (a) none of the four

mappings could outperform our method, (b) LSM resulted in a better display of the data

compared to PCM, EDM and DF2M mappings. These may be due to the signi®cant overlap

between the classes in the original data space. PCM does not utilize class information on the

data, and the squared error criterion which will be minimized does not guarantee the

preservation of the intrinsic structure of the data. In EDM the separability between the

selected pair of classes is tried to be enhanced, while the separability between the classes

merged into one group does not contribute to the problem directly. In DF2M, points in the

plane are the distances of the original pattern vectors from two class means, and the

dimensionality reduction is done as if the data would be classi®ed according to the nearest

mean classi®cation rule. These properties of EDM and DF2M require good separation of the

classes merged into one group.

We noticed that the EDM and DF2M result in better images if the database really consists

of two classes only. On the other hand, our proposed mapping and LSM do not require two

classes in the data in contrast to EDM and DF2M. Their common feature is the

prespeci®cation of class centers on the plane. Both methods try to minimize the scatter of the

mapped versions of data points around the preselected 2D targets. However, the advantage of

our method may be the non-linearities used within the nodes of the MLP. The two-layer

perceptron is able to create non-linear decision boundaries in the multivariate space. The plane

presented by LSM is in fact the subspace of the original space which discriminates the

Gaussian clusters best. If the classes are non-Gaussian the LSM may fail. The training

procedure in the MLP makes no assumptions on the shape of the class distributions but it

concentrates on the errors occurring where distributions overlap. This may be another reason

which makes our method more robust compared to the techniques considered in this study and

for this particular data.
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5. Conclusions

In this paper, we proposed a new non-linear feature mapping method intended for medical
diagnostics. Our method makes use of MLPs with prespeci®ed class target values in two
dimensions for the design purpose of interactive classi®ers on visual displays. A second
innovation in the proposed approach was a temporal segmentation and later mapping fusion
scheme. With this non-sequential treatment of the data, that is its partitioning into phases, one
could easily deal with evolutionary data as is the case with respiratory cycles.
Preliminary experiments to visually classify the parameter maps of the respiratory sound

signals were promising implying that our method can be a useful tool as an assistive device for
medical doctors. The interaction of our mapping with human users seemed quite satisfactory in
this limited set of experiments. Furthermore, the classi®cation results obtained via the visual
plots of the scatter diagrams showed consistency with the previous classi®cation experiments
based on statistical pattern recognition methods.

Fig. 6. Images of the respiratory data obtained using (a) the least squares mapping, (b) the principal component
mapping, (c) the extended declustering mapping, (d) distance from two means mapping.
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The advantages of the visual classi®cation method as opposed to other formal methods are:
(1) the targets can be selected interactively with experts, e.g., physicians, (2) prototype patients
can be selected as targets, (3) one can map data with respect to groups of classes, (4) using the
mapping display the physician/expert himself determines the decision boundaries for
classi®cation purposes.
The proposed method outperformed, at least in subjective classi®cation experiments, other

well-established mapping methods, such as the principal component mapping, the least squares
mapping, the extended declustering mapping and the distance from two means mapping. The
closest competitor to our scheme among the methods in the literature, was the least squares
mapping.
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