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Abstract

The classi(cation problem of respiratory sound signals has been addressed by taking into account their
cyclic nature, and a novel hierarchical decision fusion scheme based on the cooperation of classi(ers has been
developed. Respiratory signals from three di:erent classes are partitioned into segments, which are later joined
to form six di:erent phases of the respiration cycle. Multilayer perceptron classi(ers classify the parameterized
segments from each phase and decision vectors obtained from di:erent phases are combined using a nonlinear
decision combination function to form a (nal decision on each subject. Furthermore a new regularization
scheme is applied to the data to stabilize training and consultation.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Auscultation of the chest via a stethoscope provides useful information to the physician for the
diagnoses of respiratory disorders. However, due to the subjectivity in auditory perception among
physicians, and variability in their verbal descriptions of sound characteristics, fuzzy and qualitative
nature of the diagnosis has become the major problem for this rewarding method [1–3]. In the last
three decades, on the other hand, technical advances in sound measurement and signal processing
techniques have opened new avenues for the auscultation based diagnosis of pulmonary disorders
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[4–9]. Automatic recognition of respiratory sounds is useful in providing a computer-aided tool to
auscultation and increases its potential diagnostic value [10].

There are two major diKculties in developing such a tool: (i) respiratory signals are nonstation-
ary due to changes in lung volume and Low rate during a cycle. (ii) These sounds have a large
inter-subject variability due to age, weight and physiology and considerable intra-subject di:erences
due to the evolution state of pathology. Therefore the use of conventional classi(cation algorithms
prove inadequate, and novel approaches must take into account the problems of small sample size,
diversity of sounds, and the cyclic behavior of signals.

There exist other biological signals of cyclic nature, other than respiratory sounds, such as,
electromyogram signals in gait, pulsating blood Low signals, electrogastrogram, etc. These signals have
in common the property that from cycle to cycle the waveforms can be assumed to be statistically
identical. This means that, although the waveforms are not strictly periodic, the statistical character-
istics of the process evolve in cycles. For example, if the changes of autoregressive parameters over
a cycle are tracked, one can observe typical trends from the onset until the termination of the cycle.
This follows from the nonstationarity of the signals, which impacts on the intra-subject variability.

In this study, we propose a new classi(cation scheme that, on the one hand takes explicitly into
account the cyclic nature of the lung sounds, and on the other hand, attempts to mitigate the feature
overlaps and improve on the classi(cation performance. The contribution of our work is the design
of a novel classi(cation scheme for cyclo-stationary signals and comparative assessment of various
classi(cation fusion methods.

Classi(cation experiments are performed on a three-class respiratory database to test the pro-
posed novel classi(cation scheme considering respiratory sound signals as cyclic biological data. The
respiratory pathologies taken into account are obstructive, and restrictive pulmonary diseases of which
chronic bronchitis, emphysema and asthma are known as obstructive pulmonary disorders whereas
(brosing alveolitis, pneumonia, pleural diseases are the most common restrictive lung disorders. The
third group used in the classi(cation experiments is respiratory sound data collected from healthy
subjects.

In the proposed classi(cation scheme, respiratory sound signals are (rst partitioned into segments
that are short enough to guarantee their stationarity but long enough to allow for reliable parameter
estimation. A number of these segments are knotted together to form one of the six designated
phases of a respiration cycle. For example, the initial inspiratory phase, de(ned as early inspiration
when lung volume is still small but airLow rate is maximum, consists of ten observation segments.
All the six phases, in order, form a whole respiratory cycle. This partitioning of the signal into
segments and phases is advantageous because it (i) reduces the dimensionality of the feature space
to a manageable level where “small sample size-high dimensionality” trade o: [11,12] is over-
come to some extent and mitigates, to some extent, the evolutionary nature of the sounds, and
(ii) avails one of the possibility to zoom on the di:erent sound production mechanisms governing
each phase.

In summary we design a two-stage classi(er, where in the (rst stage we concentrate on the time
waveforms patterns in the segments, and in a second stage, on the six-dimensional phase decision
patterns issued from the (rst stage. While the (rst stage does waveform classi(cation, the second
stage looks more like a consultation session among experts. In fact, we conceive each phase classi(er
as a separate expert pro:ering its opinion on the pathology. Then we fuse the expert opinions to
reach a verdict for the whole respiratory cycle.
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Fig. 1. Block diagram of the proposed classi(cation method.

The steps of the proposed two-stage classi(cation method [13–15] are given below while the block
diagram of the proposed classi(cation method is given in Fig. 1.

(1) Each segment is parametrized, that is, we extract parsimoniously linear signal model parameters
from each segment. Segments of di:erent phases are treated separately due to di:ering signal
production mechanisms.

(2) We design separate multilayer perceptron classi(ers, each for one of the six phases. Later in
the testing stage, sound segments of each phase are classi(ed using the corresponding phase
classi(er.

(3) A “decision feature vector” consisting of the combined segment decisions from the six phases
is constructed.

(4) The (nal decision for each “decision vector” is obtained using a nonlinear decision combination
function. A multinomial classi(er, a decision tree classi(er, simple voting algorithm and Parzen
window classi(er are the four algorithms used for the decision combination.

The proposed classi(cation method can be equally well applied to other cyclic biological data,
such as blood Low, ECG, EGG or to industrial sounds from rotating machinery, like shaft, drill
sounds, or to data obtained from seasonal climatic, or oceanic measurements.

The paper is organized as follows. In Section 2, details of feature extraction, data organization
and regularization methodologies employed are presented and discussed. First stage of classi(cation,
which is on classi(cation of phases of a cycle, and various decision-making algorithms of the second
stage classi(cation used in this work are introduced in Section 3. Experimental results are given in
Section 4. Conclusions are drawn in Section 5.

2. Preliminaries on feature extraction, data organization and regularization

2.1. Feature extraction

Signals in every cycle are (rst divided into a (xed number of segments. Therefore, each patient is
represented by a single segmented cycle assuming that a cycle contains the total information requested
for recognition. The segment lengths necessarily vary over cycles of patients, as the duration of each
cycle is di:erent. For respiratory sound cycles with typical durations of 1.5–2:5 s, the (xed number
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of segments is chosen to be 60. The duration of segments varies typically in the range from 25 to
60 ms. These interval sizes represent a good compromise between parameter accuracy and stationarity
requirements. Furthermore keeping the number of segments (xed makes the task of segment decision
fusion easier.

Features are extracted from each segment of a cycle. AR (autoregressive) parameters and cepstral
coeKcients were chosen as features in the experiments with respiratory data. These parameters are
obtained directly from linear prediction coeKcients with the following recursive formula [16]:

cS(1) = −aS(1);

cS(p) =
p−1∑
k=1

(
1 − k

p

)
aS(k)cS(p− k) + aS(p); p= 1; : : : ; P; (1)

where, for the Sth segment, cS(p) and aS(p) are the pth cepstral parameter and linear prediction
coeKcient, respectively, P is the order of the autoregressive (AR) model assumed for the Sth seg-
ment. The cepstral parameters are evaluated from the AR coeKcients using the nonlinear relationship
in (1). Although the two feature sets are related, cepstral coeKcients prove to be better for sound
classi(cation [16].

The AR model order, P, was chosen as six, as it was shown in [17] that such a model is adequate
for classifying respiratory data. Consequently, each segment, S=1; 2; : : : ; 60, of a cycle is represented
either by a length six cepstral or AR feature vector, fS ,

fS = [fS(1)fS(2) : : : fS(P)]; P = 6 (model order for a short time respiratory segment);

fS(p) = aS(p) or cS(p): (2)

Segmentation of a respiratory breath cycle and features extracted from segments are shown symbol-
ically in Fig. 2.

2.2. Data organization: construction of the cycle feature set and its separation into phases

Feature vectors, fS , extracted from segments of respiratory cycles of patients are pooled into a
feature set. The total number of feature vectors is the number of segments times the number of
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Fig. 2. Segmentation of a respiratory breath cycle and features extracted from segments.
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patients in the respective classes. Thus our feature set consists of “60 (total number of segments)×
57 (total number of subjects)”.

The 60 AR or Cepstral vectors in a cycle set are grouped into 
= 6 phase sets, in consideration
of the evolutionary nature of the cyclic data. This grouping is necessary since the class membership
information in each phase may not be not identical due to di:ering sound production characteristics.
The necessity to divide a cycle into phases rises also because of the nonstationary nature of the
data within a cycle. Furthermore the use of a whole cycle in the classi(cation process results in too
large a dimensionality. It is diKcult to design a classi(er in such high-dimensional spaces, especially
when the training and testing sample sizes are relatively small. The respiratory cycle feature set was
separated into 
 = six phases as (1) early expiration, (2) mid-expiration, (3) late expiration, (4)
early inspiration, (5) mid-inspiration, (6) late inspiration.

Such a division of a respiratory cycle is also consistent with the auscultation terminology since
these six phases are accepted as the most informative and distinctive parts of a respiratory sound
signal. The duration of each phase is taken as equal, i.e., one-sixth of the whole respiratory cycle.
Thus the total number of measured feature vectors available in a phase, e.g., in early inspiration, is
“10 × total number of patients”. After separation of a cycle feature set into phase feature sets, each
phase is classi(ed separately.

2.3. Regularization of the feature space

Due to the relative sparseness of the training data, it is not possible to populate adequately in
a large dimensional feature space, and consequently the classi(er can be adversely a:ected by the
gaps. The test data may fall in those regions of the feature space for which no training samples
were presented.

The training data set can be enriched by judicious noise injection, in other words, a set of M
new feature vectors, {fnew

S ; k = 1; : : : ; M}, can be generated for each feature vector, fS by adding
Gaussian noise with zero-mean, and variance �, to its components:

fnew
S = fS + uS ; k = 1; : : : ; M; (3)

where uS is a 1×P random vector taken from a normal distribution, N (01×P; �IP×P) with zero-mean,
and covariance matrix �I, here I is a P×P identity matrix. Consequently, while a certain phase data
was represented by, say, S feature vectors, after noise injection one obtains S ×M feature vectors
(Fig. 3). The enriched feature set constructed from the measured training set by noise injection is
called the “regularized training set” in the sequel.

Training set or “learning set” is used to design classi(er, while the regularized set is used for
validation, that is, to compare the algorithms and to select the best information processing strategy.
The justi(cation for adding “noise to gain more information” lies in a space (lling argument, that
is, whenever the measurement space is not adequate to (ll the multidimensional feature space. The
classi(er designed with a sparse set may strongly adapt itself to the training vectors by disregarding
the gaps. One can therefore expect an improvement of the classi(cation performance on the average
with injection of a judicious amount of noise to the features. The noise (lls the gaps between the
training set vectors, and thus, in a way, regularizes the feature space. Such an enrichment of the
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Fig. 3. Subphase regularized training set constructed from a subphase training set.

measurement set is not new, but appears in other guises such as Parzen’s kernels, regularization in
the training of neural networks, the ridge estimate of the class covariance matrices in regularized
discriminant analysis. In principle, variance of noise could be chosen di:erently for each class
and subphase. However, in our classi(cation experiments, we generated M = 20 feature vectors
for each given one, by adding zero-mean Gaussian noise with variance �2 = 0:065 to all phase
feature sets. A two-dimensional feature space, composed of 40 vectors, and its appearance after
addition of 20 vectors from a normal distribution N (01×2; 0:0625I2×2) to each feature are shown
in Fig. 4.
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Fig. 4. (a) A two-dimensional feature space composed of two classes where each class has 20 feature vectors,
(b) appearance after injection of 20 vectors from a normal distribution N (01×2; 0:0625I2×2) to each feature vector in
the space.
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Fig. 5. Scatter diagrams of features from mid expiration training data: (a) cS(1) vs. cS(2), (b) cS(3) vs. cS(6).

3. Classi�cation

First, classi(cation is performed on individual segments using the respective phase classi(er, for
the three, respectively, training, regularized, and test sets. For each phase, a phase data classi(er
is trained to establish the three-class decision boundaries. In the following classi(cation of the
regularized set and the test set, these decision boundaries are identical.

In order to select the type of the classi(cation algorithm to be used in the (rst stage of decision-
making, an exploratory analysis of segment pattern vectors is performed. To give an insight into the
nature of this three-class pattern recognition problem, scatter diagrams of two of the “best” pairs of
the cepstral features from the mid-expiration phase are presented in Fig. 5. These scatter diagrams
are more or less typical for all the data analyzed.
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Scatter diagrams in Fig. 5 indicate that three classes overlap substantially, despite their separate
clustering tendency. Thus there is strong evidence that a classi(er is needed that allows obtaining
nonlinear decision boundaries.

A nonlinear classi(er can be obtained either using nonparametric statistical classi(ers or resorting
to an arti(cial neural network. We opted for the multilayer perceptron (MLP), the simplest and most
popular neural network, as a phase expert is preferred [18–20]. Thus a separate MLP was designed
for each phase.

Using di:erent groupings of segment data, a 
-component decision vector is obtained. More
explicitly, the decisions from the sth segments (s ranging from 1 to 10) from each phase are
combined into a 
-component decision pattern:

DS = [ds1 : : : d
s

]: (4)

Thus the consultation process, that is, merging of phase decisions, is executed for each of the segment
collections. This scheme can be interpreted with the analogy of the phase experts expressing their
opinion, and later in a “consultation” session merging them into a single decision for the patient.
A “boss classi(er” having the phase decision patterns as input enacts the consultation session.

There are various schemes to fusion the phase decisions, the simplest being the majority voting,
and solving the ties by random choice. On the other extreme, the maximum number of bins, i.e.,
di:erent decision patterns, which can occur for an L-class problem is L
, where 
 is the number of
experts and L is the number of classes. In our speci(c problem, with L=3 classes and 
=6 experts,
there results 36 =729 bins. Clearly, one would need a huge data collection to estimate the conditional
probability of bins for all the classes. The decision for DS would correspond then to the most probable
bin. This type of expert consultation will be denoted as the multinomial classi(er in the sequel. In
this multinomial classi(er, the decision for any 
-fold segment group DS would correspond to the
most probable bin over the classes. Thus using the class probabilities, Pc; c= 1; : : : ; L, one estimates

arg max
c

{PcPl(c)}; c = 1; 2; : : : ; L; (5)

Pl(c) =
nl(c)
Nc

and
L
∑
l=1

Pl(c) = 1; (6)

where Pl(c) are the class conditional bin probabilities, nl(c) and Nc are the total number of lth bins
and decision patterns, DS , existing in the cth class, respectively.

Due to the forbidding number of bins, the use of the multinomial classi(er becomes impractical.
In such cases, one might use the decision tree [21] or the nonparametric Parzen window classi(er
with a suitable distance metric. Note that in the small sample size cases, simpler classi(cation rules
are often better than the complex ones.

The two principle assumptions used to simplify the multinomial classi(er are as follows:

• Many states belonging to one class can be joined together and described by smaller number of
bins.

• Class membership of the bins with extremely small probabilities, Pl(c), can be neglected.

To implement these simpli(cations Boolean algebra, fast algorithms for multivariate histograms, or
decision tree classi(ers can be used. The decision tree classi(er is advantageous in its simplicity and
tractability of the results, which is important in decision-making [21].
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In the decision tree schema, the one-layer L
-branch tree is e:ectively substituted by a multilayer
tree, where the complexity of each layer is considerably less. This simpli(cation results in part
by the partitioning of the bins between layers, and in part for a large number of bins, the class
membership probability is negligible. In fact, as a result of pruning of branches and leaves, each
problem might have a di:erent tree architecture [21]. In other words, to make a solution concerning
the class membership of the discrete decision vector, DS , the decision tree classi(er uses only one
element of DS at a time and allocates vector DS to one of the branches where it will be classi(ed
further (sent to a next branch), so that the complexity of the decision mechanism is simpli(ed.

Parzen window classi(er is another alternative consultation approach to multinomial scheme for
the decision vector, DS . In multi-category case it performs the classi(cation according to a maximum
of the density estimate

gc(DS) = Pcf(DS | c) =
Pc
Nc

Nc∑
j=1

�(D(DS ;Dj; c); �2); (7)

where �(D(DS ;Dj; c); �2) is a discrete kernel function which determines the contribution of a single
training vector from the cth class, Dj; c, while classifying an unknown vector, DS , and � controls
the degree of the contribution in accordance with distance between DS and Dj; c. In this work, the
following kernel and distance measure are used:

�(D) = �1−D(DS ;Dj; c)(1 − �)D(DS ;Dj; c); (8)

where D(DS ;Dj; c) is the distance between DS and Dj; c, e.g., the number of disagreements between
these two vectors.

Finally, in all of the three consultation schemes discussed above, both the training and test patterns,
DS , consist of the decision patterns obtained by classifying segments of the 
 phases by the respective
classi(ers. Recall that in our case, “segments” are represented either by the cepstral or AR features.
On the other hand, when regularized data is used, the training data is enriched M -fold, while the
test data is still the original measured data (not enriched).

4. Experimental results and discussion

In this section classi(cation results for the 57 respiratory sound signals are presented. Measurement
records from 18 chronic obstructive patients (class-1), 19 restrictive lung disease patients (class-2)
and 20 healthy subjects (class-3) are analyzed.

In the measurement procedure, two air-coupled electret microphones were used to record respira-
tory sounds from the basilars. The signal was ampli(ed with a low noise ampli(er and bandpass-
(ltered between 80 to 2000 Hz. The high pass section which (lters out heart sounds and frictional
noise was a sixth-order Bessel (lter with almost linear phase characteristics so that crackles, which
may be present in the signal, are minimally distorted. Similarly eight order Butterworth (lter with
Lat passband characteristics was used as anti-aliasing (lter. The gain of the ampli(er-(lter unit was
60 dB. The signal was sampled with a 12-bit analog to digital converter at 5000 sampling rate and
inputted to the computer. In order to adjust the Low rate such that a minimum of 1 l=s was achieved
and to synchronize on the inspiration–expiration cycles, the Low signal was also recorded by a
Fleisch type Lowmeter and digitized with the same ADC. Recordings from each site were 12:8 s in
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Table 1
Segment misclassi(cation probabilities of the six phase training sets, and test sets using cepstral and AR features

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Feature set Train Test Train Test Train Test Train Test Train Test Train Test

Cepstral 0.32 0.43 0.31 0.43 0.34 0.41 0.31 0.37 0.23 0.28 0.27 0.33
AR 0.38 0.52 0.38 0.45 0.40 0.43 0.33 0.38 0.25 0.29 0.36 0.45

duration, a period covering 3–4 respiration cycles. After each recording, the quality of the recorded
sound was monitored via the headphones and by the computer against ambient noise. The recordings
were done in the presence of a pulmonary physician in the hospital environment [17].

Recorded signal in a respiration cycle is divided into a (xed number of segments as illustrated in
Fig. 2. The number of segments is chosen to be 60 for a whole respiration cycle. Each segment is
characterized by six cepstral and six AR coeKcients forming two feature sets, which are classi(ed
separately and comparatively. These segments in each cycle are further partitioned into six phases,
namely, early, mid, late inspiration/expiration phases, each group consisting of ten consecutive seg-
ments. The segments belonging to each phase are further split into a training and a test set. More
explicitly, every other segment of a phase is assigned to the training set, while the remaining seg-
ments of the same phase are used in the test stage. The choice of such interleaving test and training
sets is made purely as a proving ground for any improvements that the proposed scheme could bring.

A separate multilayer perceptron classi(er is designed for each phase feature set. After several
preliminary classi(cation experiments, six hidden units were chosen for each expert. In order to
(nd the weights, a standard backpropagation MLP training algorithm is used. Results of the seg-
ment classi(cation of the training, and test sets, using AR and cepstral coeKcients are presented in
Table 1.

As documented in Table 1, the classi(cation performances of phase experts on the individual
segments are rather mediocre (0.37 and 0.42 error on the average for cepstral and AR coeKcients,
respectively). Their performance is boosted up by the strategy of using a second stage decision on
the pattern of segment decisions, which can be thought as “a consultation of experts”. Furthermore,
since the six cepstral features result in best classi(cation performances for the test sets, decision fea-
ture vectors used in the decision combination algorithms are extracted from the length six cepstral
vectors only.

Each decision vector, DS , has six elements each of which can take the value either 1 or 2 or 3, i.e.,
the class membership decision given by a phase expert, and a class decision is reached by one of the
consultation schemes for each DS . In each phase there results (ve segment decisions for each subject
(since the other (ve alternating segments are reserved for testing). The decisions on segments in
di:erent phases but with the same sequence number, i.e., segment-s of phase-1, segment-s of phase-2,
etc., are fused via consultation. This reduces the votes for a cycle from 5×6=30 to just (ve. Finally,
the classi(cation of a cycle is based on majority voting of the consultation decisions on each of the
(ve “fused” segments. The consultation actually takes place via a classi(er operating on the pattern
of class decisions from each segment. This procedure is applied (ve times to each of the (ve DS’s
resulting from every cycle of respiration.
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Table 2
Average segment (decision vector) classi(cation errors using various consultation schemes

Multinomial Decision tree Parzen window Voting

Train Test Train Test Train Test Train Test

0.028 0.340 0.077 0.242 0.147 0.179 0.165 0.218
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0.24

0.16
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0
0 243 486 729

bins

P1,s 0.45
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(a)  (b) (c)

Fig. 6. Histogram probabilities: (a) P1; s, (b) P2; s, (c) P3; s, of classes according to the bins, s = 1; 2; : : : ; m= 729.

The four decision fusion algorithms, namely, the multinomial classi(er (M), the decision tree clas-
si(er (DT), Parzen window classi(er (P), voting (V ) schemes, have been compared. The
improvement in the classi(cation performance of segments (decision patterns, DS) by fusing ex-
pert decisions is shown in Table 2. It can be observed that all fusion schemes bring signi(cant
improvements but to varying degrees. The segment classi(cation error of phase experts on the test
sets is at an average of 0.37 (Table 1), while after the consultation, segment classi(cation error
drops down to 0.34, 0.24, 0.18, 0.22 for the M , DT, P, and V schemes, respectively.

However one notices, also, a large discrepancy between training and test performances of consul-
tation schemes. The discrepancy is most severe for the M case and can be explained on the basis
of the sparseness of the data. In fact the M scheme has 729 states, but is trained with a set of
285 vectors overall. This means that even if all bins taken by decision vectors are di:erent from
each other, class membership probabilities of 729–285 = 444 states are zero. Furthermore, class
membership probabilities of many of the states are extremely small in this application. This can be
easily noticed when the histogram probabilities and probability distributions of the three classes are
observed (Fig. 6). As can be noticed from Table 2, P and DT schemes give error rates of 0.18
and 0.24 on the test set, respectively, while this value is 0.34 for the M scheme. In other words,
as such, the multinomial decision fusion turns out to be useless. Thus simpli(cation of the M type
of decision fusion is justi(ed. Simpler consultation schemes are more robust in that they do not get
overtrained. In Table 2, the DT had 49 (nal leaves (instead of 729 bins, thus the data is signi(cantly
compressed), and the P window parameter is �= 1:6.
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A second alternative for the small sample size problem is the enrichment of the feature space by
noise injection to the training data, i.e., the construction of a regularized training set. In other words,
since feature data are sparse with respect to the dimensionality of the feature space, data space is
enriched by adding noise to features. To this purpose, several runs of independent and identically
distributed Gaussian noise, with zero mean and variance �2, is added to each training set vector. If
f denotes a feature vector, it is replicated M times (M was taken 20) with the addition of noise to
its components. A classi(er designed with a sparse set may adapt itself too strongly to the training
vectors due to the gaps. The added noise (lls the gaps between the training vectors, and thus, in a
way, regularizes and stabilizes the feature space. Noise injection to the feature space is similar to
Parzen kernels, in that each measured feature points is interpreted as signaling other potential vectors
in its neighborhood. Noise is added to features in each phase, with an empirical variance, �2. The
“regularized training decision set” constructed from 20 runs of independent Gaussian noises with
�2 = 0:0645 injected into the features of six phase training sets resulted in the best M performance
for the “test decision set”. Results of the segment classi(cation of the regularized training sets, using
AR and cepstral coeKcients are presented in Table 3 to give an insight.

The optimum value of the standard deviation of the injected noise is determined by comparing
the performances of the multinomial classi(ers designed based on the regularized training decision
sets with various noise having di:erent standard deviation values. Changes in the error rates of
the multinomial classi(ers with di:erent standard deviation values for the regularized training and
test decision sets are depicted in Fig. 7. As can be noticed, the value of the error for the test

Table 3
Segment misclassi(cation probabilities of the six phase regularized training sets using cepstral and AR features

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Feature Regularized Regularized Regularized Regularized Regularized Regularized
set training training training training training training

Cepstral 0.43 0.44 0.44 0.40 0.32 0.37
AR 0.49 0.48 0.51 0.41 0.38 0.43
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Fig. 7. The change of the multinomial error rate with the standard deviation of the injected zero mean noise to the
validation and test sets data.
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Fig. 8. Histogram probabilities, (a) P1; s, (b) P2; s, (c) P3; s, of classes according to the bins, s = 1; 2; : : : ; m = 729, for the
regularized training set.

Table 4
“Test decision set” segment classi(cation errors for the multinomial and decision tree schemes designed from the regu-
larized training decision set

Multinomial Decision tree

0.218 0.196

set becomes minimum (0.22) when the standard deviation of the injected noise is 0.0645. Fig. 8
shows the histogram probabilities of the three classes in the regularized training decision sets. One
can easily notice from Figs. 6 and 8 that the decision feature space is (lled adequately by noise
injection and that most of the bins have values, which are considerably greater than zero. Note also
that, the total number of segments in each phase training set increases from 57 (total number of
subjects)× 5(number of segments representing a subject in each phase)=285 to 57(total number of
subjects)× 5(number of segments representing a subject in each phase)× 20(total number of noisy
segments)=5700 in each phase regularized training set.

In Table 4, “test decision set” segment classi(cation errors of M and DT designed with the
regularized training set are presented. Note from Tables 2 and 4 that the use of the regularized
training set instead of the actual training set results 0.12 and 0.046 improvements in the performances
of M and DT consultations, respectively. Thus with noise injection both the multinomial and decision
tree classi(ers improve to a level comparable to that of the Parzen scheme.

The third stage of classi(cation is in fact to reach a class decision for the whole cycle therefore
for the subject, itself. This is achieved by merging the (ve consultation decisions resulting from
the (ve DS’s of a cycle via majority logic. The misclassi(cation probabilities of subjects based on
majority voting of the M , DT, P and V consultation decisions on DS’s are presented in Table 5.

Subject misclassi(cation probabilities of the M and DT schemes designed with the regularized
training set are also given in Table 5. Table 5 states that the performance of the P scheme is the
best with 0.14 error rate, and the DT classi(er with 0.16 error rate follows P.
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Table 5

(a) Subject classi(cation errors based on majority voting of various consultation decisions

Multinomial Decision tree Parzen window Voting

0.333 0.158 0.140 0.175

(b) Subject classi(cation errors (again with majority logic) of the multinomial and the decision tree classi(ers designed
using the regularized training set

Multinomial Decision tree

0.140 0.140

Table 6
Classi(cation results in terms of probability of misclassi(cation obtained from 5, 4, and 3-expert decision vectors. Numbers
in parentheses show the subject classi(cation performance based on majority voting of decision vectors

Classi(cation with Multinomial Decision tree Parzen window Voting
(train/test) (train/test) (train/test) (train/test)

5 Experts 0.05/0.22 0.10/0.24 0.07/0.18 0.16/0.22
(0.02/0.13) (0.09/0.16) (0.02/0.12) (0.09/0.14)

4 Experts 0.08/0.27 0.11/0.24 0.09/0.22 0.18/0.24
(0.04/0.18) (0.05/0.21) (0.04/17.54) (0.11/0.13)

3 Experts 0.15/0.27 0.16/0.26 0.16/0.26 0.19/0.27
(0.02/0.18) (0/0.11) (0.07/0.19) (0.11/0.18)

The performance of the DT is 0.017 better than V scheme in subject classi(cation, while V was
0.024 better compared to DT in segment classi(cation (Table 2). On the other hand, the use of
the regularized training set, i.e., noise injection to the training space, in the design of M and DT
schemes is once more justi(ed: Subject classi(cation performances of M and DT are improved by
0.193 and 0.018, respectively.

One of the possible solutions to overcome the “small sample size-complexity of the classi(er trade-
o:” is to decrease the number of experts that consult on respiratory cycles. This can be achieved
by neglecting the phase experts that give the lowest classi(cation performance on the training and
regularized training sets. To this purpose, classi(cation experiments are repeated with (ve, four,
and three experts by leaving out the third (late inspiration), (rst (early inspiration) and third, (rst,
second (mid inspiration) and third experts, respectively (see Table 1), in the decision-making proce-
dures. Classi(cation results of the decision-making algorithms on decision vectors and further subject
classi(cation performances based on voting are given in Table 6.

It can be observed from Table 6 that the performance of the M classi(er on the test set in the case
of smaller number of experts is much better than the six experts case both in the sense of vector
classi(cation and subject classi(cation. On the other hand (ve-expert case gives the best performance
with the M classi(er compared to three- and four-expert cases. This shows that the choice of (ve
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best experts out of six is a good compromise between the complexity of the classi(er and the
sample size (35 = 243 bins to classify 285 decision vectors). On the other hand, performance of the
P decreases with the decreasing number of experts. The optimum value of the smoothing parameter
� is found to be 0.6 for (ve, four, and three experts. The decrease in the performance may be due
to the kernel and distance measure used to calculate the maximum of the density estimate, which
cannot handle well the contribution of each single training vector while classifying an unknown
vector in the compressed versions of feature spaces. DT classi(ers used with six, (ve, four, and
three experts result approximately in the same classi(cation performances on decision vectors. This
shows that the simpli(cation of the M classi(er in the case of varying number of experts is possible
to some extent for this data. It is interesting to note that the DT designed using three experts gives
the worst performance (0.26) on the decision vectors, but the best performance (0.11) in the further
classi(cation of subjects via voting. Therefore the simpli(cation of the M by the use of the DT and
the use of the smaller number of experts is bene(cial to organize the decision vectors of a subject in
a reasonable way. These experiments show that either M , or DT, or P classi(ers overcome simple
voting traditionally used in the cooperation of classi(ers, but simpli(cation of the M case in some
reasonable way is necessary.

In summary, for the MLP classi(er with six hidden neurons designed for the whole breath cycle,
the use of one expert resulted in the classi(cation error of 0.42 for the segments, and 0.33 for subjects,
while the use of the cooperation of phase experts resulted in the classi(cation error of 0.2–0.3 for
segments, and 0.1–0.2 for subjects in the classi(cation experiments. The multinomial classi(er,
the decision tree classi(er, the Parzen window classi(er, and simple voting are used as alternate
decision combination algorithms. It has been shown that the “small learning set size-complexity of
the multinomial classi(er tradeo:” can be overcome to some extent with the use of (1) the Parzen
window approach (2) the decision tree classi(er, (3) regularization, and (4) smaller number of phase
experts.

5. Conclusion

In conclusion, a new hierarchical decision-making scheme based on the cooperation of neural
networks to classify respiratory sound patterns has been proposed in this paper. To this purpose
each breathing cycle is divided into phases, and a separate MLP classi(er, which is called, a phase
expert is used for each of them. Phase decisions are then combined via a decision combination
function. Furthermore a novel regularization scheme is applied to the data to stabilize training and
decision-making. The MLP classi(er with six hidden neurons designed for whole breath cycles, e.g.,
the use of one expert, resulted in the correct classi(cation performance of 58% for the segments,
and 67% for subjects, while the use of the cooperation of phase experts resulted in the correct
classi(cation of 70–80% for segments, and 80–90% for subjects.

The multinomial classi(er, the decision tree classi(er, the Parzen window classi(er, and simple
voting are used as alternate decision combination algorithms. It has been shown that the “small
learning set size-complexity of the multinomial classi(er tradeo:” can be overcome to some extent
with the use of (1) the Parzen window approach (2) the decision tree classi(er, (3) regularization,
and (4) smaller number of phase experts.
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