
NEUROCOMPUTINC

Neurocomputing 12 (1996) 223-248

Variable selection with neural networks ’

Tautvydas Cibas ‘, Fraqoise Fogelman Souli b,
Patrick Gallinari ‘3 * , Sarunas Raudys d

a LR& b&t. 490, Universitk de Paris&d, F-91405 Orsay? France
b SLZGOS, 1 avenue Newton, bp 207, F-92 142 Ckmart cedex, France

’ LAFORZA-ZBP, Univ. Paris 6,4 Place Jussieu, F-75252 Paris cedex 05, France
d Dep. Data Analysis, Inst. Math. Znformatics, Akademijos’4, Wnius 2600, Lithuania

Received 15 November 1994; accepted 2 October 1995

Ahstraet

In this paper, we present 3 different neural network-based methods to perform variable
selection. OCD - Optimal Cell Damage - is a pruning method, which evaluates the
usefulness of a variable and prunes the least useful ones (it is related to the Optimal Brain
Damage method of J_.e Cun et al.). Regularization theory proposes to constrain estimators
by adding a term to the cost function used to train a neural network. In the Bayesian
framework, this additional term can be interpreted as the log prior to the weights
distribution. We propose to use two priors (a Gaussian and a Gaussian mixture) and show
that this regularization approach allows to select efficient subsets of variables. Our methods
are compared to conventional statistical selection procedures and are shown to significantly
improve on that.

Keywords: Variable selection; Regularization; Neural network pruning, Dimensionality
reduction

1. introduction

Neural Networks - NNs - are used in quite a variety of real-world applications,
where one can usually measure a potentially large number P of variables Xi.
Usually not all Xi are equally informative: there may be noisy components, some
Xi maybe irrelevant to the problem or redundant when correlated. For small data

* Corresponding author. Email: gaUinari@laforia.ibp.fr
’ This paper extends two papers presented at the ICANN’94 conference in Sorrento: [lO,ll].

0925~2312/96/$15.00 8 1996 Elsevier Science B.V. All rights reserved
SSDZ 0925-2312(95)00121-2

224 T. Cibas et al. /Neurocomputing 12 (1996) 223-248

sets, better performances may be obtained by discarding even informative vari-
ables. In many practical applications, if one could select p a P ‘best’ variables Xi,
then one could reduce the amount of data to gather and process while possibly
increasing performances. Variable selection is thus an important issue in NNs. It is
also a complex problem; one needs a criterion to measure the importance of a
variables subset and that value will, of course, depend on the predictor or classifier
further used: a subset of variables could be optimal for one system, and very
inefficient for another; an optimal subset of size p might not contain all variables
of a smaller subset (non-rnonotonicity). Conventional variable selection techniques
are based upon statistical or heuristic tools [15,16,36]. The major difficulty comes
from the intrinsic combinatorics of the problem with the consequence that only
approximate methods, based on heuristic measures of variable importance, can be
used for large size problems. Most often, selection and data processing, e.g.
classification, are treated sequentially and the adequacy of the selection criterion
to the classifier is up to the user. Using NNs for variable selection is attractive,
since they have the potential for simultaneously performing classification or
approximation and variable selection: variables will thus be selected so as to
optimize the training criterion.

In this paper we will present two methods for variables selection through NNs.
Both are sub-optimal since they rely on heuristics, they are aimed at practical
applications.

The first one is based on the evaluation of a variable usefulness. Various
methods have been proposed to assess the value of a weight [29,20,22]. Using ideas
similar to [22], we derive a method, called Optimal Cell Damage - OCD - which
evaluates the usefulness of input variables in a Multi-Layer Network and prunes
the least useful. Variable selection is thus achieved while training the classifier,
which ensures that the selected set of variables is adequate for the classifier.
Variable selection is viewed here as a rather straightforward extension of weight
pruning.

The second approach makes use of regularization terms under a Bayesian
interpretation (Gaussian and Gaussian mixture priors) and shows to discard,
during training, the least useful variables. Regularization and Bayesian training
have been used recently in a variety of settings in NNs [32,17,37,231.

When implementing these methods, one has to decide on several options: when
to start (pruning, or regularizing), how much (how many weights, or with how large
a regularizing factor), which training algorithm to choose for ensuring the quality
of the selection, and whether selection should be implemented as a ‘non-conver-
gent method’ [14]. All of these decisions may indeed be important for the method
applicability. In our tests, we discuss these issues.

We compare the performances of the two methods to the standard SAS stepwke
and stepdisc procedures. This comparison is performed on two different tasks: a
prediction problem for a synthetic time series and a classification problem from 161.
Both tasks are relatively simple, yet representative of the two major classes of
problems addressed by NNs; they also are complex enough for our results to be
significant.

T. Cibas et al. /Neumcomputing 12 (1996) 223-248 225

The paper is organized as follows: Section 2 introduces notations and results
from the literature; Section 3 the problem used to test our methods, Section 4
variable selection by OCD and Section 5 by regularization.

2. Variable selection

2.1. Definitions

Let be given a random variable pair (X, Y) E II%?’ x Rip, with probability distri-
bution P. Based on a sample D,,, = {(x1, y’). . .(x’@, y”)}, drawn from (X, Y), we
train an NN to capture the relation between X and Y, i.e. to produce an estimator
F, the NN approximation to the expectation E[Y/X]. We will deal in the following
with prediction and classification tasks. The problem in variable selection is to
extract the best set of features from an original input space, and possibly deter-
mine the optimal number p * of features, for a given criterion: some components
of the original input XE BP are eliminated to produce a vector with p features
x E BP, p I P. Training will be performed here according to a mean square error
(MSE) criterion or an extended MSE criterion in the case of the Bayesian
approach. We will use local criteria for ranking variables and perform selection
during training. Efficiency of the selection will be measured through the empirical
prediction error,

2.2. Statistical methods for uariable selection /extraction

Feature selection has been extensively studied in the statistical or pattern
recognition literature [15,26,27]. A feature selection technique typically requires
the following ingredients:
- a feature evaluation criterion J to compare feature vectors x E BP,
- a search procedure, to search the set of possible feature vectors x,
- a stop criterion, which could be a significance threshold in criterion J or the

final feature space dimension.
Depending on the task (e.g. prediction or classification) and on the model

(linear, logistic,. . . >, several evaluation criteria, based either on sound statistical
grounds or heuristics, have been proposed for measuring the importance of a
variable subset. For classification, classical criteria use probabilistic distances or
entropy measures, often replaced in practice by simple interclass distance mea-
sures or even simple distances. For approximation or prediction, classical candi-
dates are distance measures [19].

In general, these evaluation criteria are non monotonic, and exact comparison
of feature subsets amounts to a combinatorial problem, which rapidly becomes
computationally unfeasible, even for moderate input size. Due to these limitations,
most algorithms are based upon heuristic performance measures and sub-optimal
search. There are various procedures: in the forward selection method, vector x is
progressively built up, by starting with the empty set and adding one or a few

226 T. Cibas et al./Neurocomputing 12 (1996) 223-248

features at a time; the backward elimination technique works in the opposite
direction: features are progressively eliminated from X one at a time.

Stopping the process is usually based on the evaluation criterion or on tests; one
can also use a criterion for trading between complexity and accuracy such as AIC
[ll or BIC [341.

In the following, our testbed will be the stepwise and stepdisc procedures
implemented in SAS. Both alternate forward and backward selection, the evalua-
tion criterion is the Fisher-Snedecor ratio, an F-test of the null hypothesis H, that
all selected variables are significant (see Annex 1 for the description of these
procedures).

In the NN literature, variable selection methods using entropy measures for
feature evaluation have been proposed e.g. [2] they are based on the same ideas as
the classical methods mentioned above and selection is performed prior to learn-
ing. The techniques we propose here are different in that they do selection after a
first training step has been performed. They should be able to take into account
the variable dependencies which have been estimated after training the system
which will be used further on.

2.3. Neural network methods for sensitivity analysis

Various authors have proposed methods to prune useless connections so as to
ensure correct generalization through the control of the network complexity [9,37].
We will focus here on the Optimal Bruin Damage technique [22]: the saliency of a
weight is defined as the cost variation resulting from the weight suppression.

Let N be a Neural Network picked from a family of multi-layer networks and
0, the learning set of size m. We use the Squared Error - SE - defined as:

k=l
(2.1)

where F,<xk> is the computed output for input xk, y k the desired output, and F,,,
the global transfer function realized by Network N.

The Mean Square Error - MSE - is then defined as:

(2.2)

L.e Cun et al. [22] have shown that, if the Hessian can be approximated by a
diagonal matrix, and the cost is locally quadratic, then the saliency of weight i is
approximated, locally around a minimum W,, by:

1 a*c
si = $Hiiw;:2 = - -W;:2

2 awi2 (2.3)

which can be computed by an additional backward pass to the usual Back-propa-
gation algorithm (see Appendix 2). Exact methods could be used to compute the
Hessian, instead of assuming diagonality [3,18].

T. Cibas et al /Neurocomputing 12 (l!W6) 223-248 227

The weight of smallest saliency is the weight whose pruning will least increase
the cost. Notice that OBD explicitly requires that the network has reached
convergence to a minimum W,.

2.4. Neural networks and regularization

The regularization framework has provided another bunch of practical methods
to handle the problem of poor generalization [31]. It considers estimation with too
few and noisy data as an ill-posed problem, whereas constraints must be imposed
on the final solution so as to make the problem well-posed. These constraints are
usually implemented as follows. For an input xk, desired output yk and computed
output F(xk), we train the network to minimize:

M(W) = a C(w, 4) + PEW(W) (2.4)
where C(W, 0,) is as in (2.1) and the regulatiation term E,(W) embodies the
constraints. Weight decay - WD - is the simplest regularization term used in the
NN literature [32,37,8]:

E,(W) =clq2 (2.5)

Such constraints may be given a Bayesian interpretation [13,5,23,24]. In this
framework, one looks for weights W which maximize the a posteriori distribution,
conditioned by the observed data 0,; which is equivalent, if one assumes an
additive Gaussian noise model N(0, u2) on data, to minimizing:

M(W) = &(W, 0,) -In P(W) (2.6)

If prior P(W) is taken to be gaussian NCO, a;), then the log prior is, up to a
constant, just weight decay (2.5) (where I W I is the number of weights):

Other assumptions on the weights prior can be made [7,30]. This Bayesian
framework can be used for pruning [25,351. Regularization hyper-parameters cx
and p have to be determined: they have an interpretation in terms of the data
noise and weight variances. The full Bayesian approach can in theory provide for
their automatic determination. However, for large dimensions, this approach is not
efficient, so that usually, they are set by using some form of cross-validation. In the
following, we use a regularized cost function to perform feature selection, with two
different weights priors: Gaussian - WD - and Gaussian mixture. All hyper-
parameters are determined by using a validation set.

2.5. Summary

Conventional techniques for variable selection are hindered by the non-mono-
tonicity problem: heuristics guide both selection and stopping criteria. They usually

228 T. Cibas et al. / Neurocomputing 12 (19%) 223-248

build-up features sets by including - or excluding - one - or a few - feature(s) at a
time: because of non-monotonicity, this can lead to sub-optimal subsets. Various
parameters have to be set a priori, e.g. the number of features ,added - or removed
- at each step, the final features space size; significance level for selecting
features.. . Final results can widely vary depending on the choices made. After
selection has been made, classification or prediction may rely on totally different
techniques. On’the other hand, the heuristic approach we propose here allows to
carry on simultaneously variable selection and parameter estimation for the
desired task: variables are selected globally to best fit the final estimator. However,
NN training requires the setting of various parameters and hyperparameters in the
case of regularization: no exact theory so far can provide for the exact setting of
these parameters. One can resort to different heuristics to set them: trial-and-er-
ror, cross-validation, estimation or learning. In the following, we will chiefly use
cross-validation. Whatever the method selected, choosing the parameters usually
requires a large amount of additional computations.

3. Experiments setting

In this section, we describe the version of Gradient Back Propagation - GBP -
and the test problem we used. It is important here to describe the precise version
of GBP which has been implemented since it may influence the quality of
convergence and thus the feature selection process. For example, performances on
our time series are very sensitive to GBP parameters.

3.1. Training procedure

We use three independent sets of respective sizes m,, m, and m,: DA, for
learning, D;, for validation (i.e. set the parameters) and DA, for test. Our training
procedure is an on-line GBP implemented as follows: the gradient step E is started
from an initial value e0 and decreased as soon as the relative average cost variation
becomes too small. It has been chosen here for its simplicity.

GBP 0 run N steps of on-line GBP with E = E,,.
0 while EWE* do

run on-line GBP on 0; with E
i f r(W, Di, t, T,) I O1

then E(~+~)=cY.E(~) else ~(t+l)=df)
endwhi Le

where

(34

T. Cibm et al. /Neurocomputing 12 (19%) 223-248 229

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1 so

1 .oo

0.50

D.00

0.50

1.00

1.50

2.00

2.50 i

3 .oo x 109
1.00 210 1.40 1.60 I .*o 200

Fig. 1. Time series zI from validation set D,$

r(W, D, t, T) is the relative average cost variation between epochs 0 - T to t - 1)
and (t - T + 1 to t). C(W, D) is the error defined in (2.1).

GBP thus depends on various parameters: Ed, &I and 6, being given, N, Tl and
cx are set by cross-validation on the validation set, using the MSE criterion. The
methods described below were found sensitive to the quality of local minima and
thus to the above parameters. Note that such parameters do exist for any
gradient-like algorithm. Weight initialization also influences the algorithm behav-
ior, but this has not been considered here.

3.2. Time series

We have used a non linear synthetic time series yt, defined as follows:

x, = 0.3x,_, -0.6x,_, -t 0.5x,_, + U,

yr =x, + 0.3x:_, - 0.2x,2_,

where U, is a white noise.

(3.2)

Three independent samples of size m = 1000 each are drawn from series y,:
II;, 0: and 0;. Each sample set is normalized as follows:
- the average 7 and variance s2 of set 0; are computed.
- y, is then changed to z, = (y, -J)/(s), for all 3 sets Ok, 0: and 0;.
Fig. 1 shows set 0;.

Best performances on this series may be obtained with a linear network whose
inputs are the predictors of (3.2). We have used a linear network 12-1 (with all 10
input variables x, _ 1,, to x,__~ plus variables x;__~, and x:-J: variable selection
should pick up the ‘true’ inputs x, _ 6, xt_+ xt_r, x:_~, x,“_~ since yt is linear in
these variables. The final MSE should be approximately the variance of uI, i.e.

230 T. Cibas et al. /Neurocomputing 12 (1994) 223-248

Fig. 2. Final MSE for time series, net 10-7-l (3 top lines) and 12-1 (bottom).

0.04072 (after normalization of y,). This network represents the best possible
performances and will be used here for comparison.

Because in real situations we do not know the underlying structure of the series,
we used for implementing our selection methods a network 10-7-l (with all 10
variables x,_r,, to x,-r as inputs, 7 non linear hidden units and 1 linear output).
Now, selection should pick up input variables (x,+, xt+, xt_r>.

Results are shown in Fig. 2 for net 10-7-l and net 12-1. We use the MSE on 0:
to choose the best parameter values for net 10-7-l (for the sake of simplicity, only
results for choosing Tr and 01 are given; results allowing to choose N are of the
same sort). Net 12-1 is very easy to train, and its performances are extremely
robust with respect to parameters choice.

Cross-validation gave (net 10-7-l) Tr = 5, N = 30, and OL = 3/4, for E,, = 0.1, &I
= 0.0001, g1 = 0.0005. Values &a = 0.1, Ed = 0.000005, 8, = 0.000025 (to reach al-
most perfect convergence), (Y = 0.875 were used for net 12-1, without doing any
cross-validation there (see Fig. 2).

Final MSEs at the end of GBP with net 12-1 were of order 45.10e3 (which is
slightly larger than vu&), as expected). Errors bars on the final MSE should be
computed. For more clarity in the figures, we have not given them in the text: the
interested reader can refer to Appendix 3 where our technique for computing
error-bars is described, together with a few results. The time series yt has some
pseudo-periodic behavior, which results in 0; being very oscillating, and DA
much smoother. This explains why performances on test set D& were often found
better than on validation set DA.

3.3. Waveforms

We have extended a problem introduced in [61: 3 vectors or waveforms in 21
dimensions, Hi, i = 1,. . . , 3, are given. Patterns in each class are defined in I?” as
random convex combinations of 2 of these vectors (waves (1, 2), (1, 3), (2, 3)
respectively for class 1,2 and 3, see Fig. 3) plus 19 additional noisy components [41.
The problem is then to classify these patterns into one of the 3 classes. More
precisely, patterns are generated according to:

UHim + (1 - u)Hi”
Xi =

5
+ Ei OSiI20

Xi = Ei 21 Ii<40

T. Cibas et al. /Neurocomputing 12 (1996) 223-248 231

I,

0.5 . .

0 . .

-0.5 .,

0.5 . .

0 _.

-0.5 . .

1,

0.5 . .

0 . .

-0.5 . .

Fig. 3. Waveforms, each graph plots several patterns from class 1, 2 and 3 (top to bottom). The first 21
components contain the class information, the last 19 are noisy components.

m
Fig. 4. Final MSE for waveforms, net 40-10-3 (top) and 40-3 (bottom).

232 T. Cibas et al./Neurocomputing 12 (19%) 223-248

where xi denotes the ith component of a pattern x, u is a uniform random
variable in [O, 11, Ed is generated according to a normal distribution MO, 11, m and
n identify the two waves used in this combination, i.e. the class of pattern x. Ok
has 300 elements, 0; 1000 and 0; 5000.

Fig. 4 gives the final performances at the end of GBP with net 40-10-3 and net
40-3. These were obtained for the following values set after cross validation:
Tl = 10, OL = 0.85, E,, = 0.2, Ed = 0.0001, 8, = 0.0001 (net 40-10-3) and Ti = 30, and
CL = 0.95, for &a = 0.2, E~ = 0.0001, 0, = 0.0001 (net 40-31.

4. Optimal cell damage

4.1. The algorithm

We now describe our variable selection procedure which is based on an
extension of OBD. The cost variation can be approximated to order 2, around a
local minimum IV, by a quadratic form 1221 (Appendix 2). Discarding a variable Xi
can be implemented by setting to 8 all weights Wji in Fan-Out(i), the Fan-Out of
input neuron i. Thus the resulting cost is just the sum of the costs associated to the
suppression of the various weights. Similar methods have been proposed for
discarding hidden units [9].

The saliency of variable i is thus defined as:

5i= C sj

jsFan_Out(i)
(4.1)

where sj is the saliency of weight II$ (2.3).
Our algorithm for OCD has been run as follows (after normalization of data as

indicated in Section 3): if the relative average variation of cost in two successive
periods is too small, then prune a fraction 4 of inputs.

OCD i f r(W, D;, t - 1, Tl> I 8, and r(W, D&, t, Tl) I 8, (4.2)
then l compute saliencies Ji at time t and order them: ii, 2 5i, 2

> 5d$. . . _
l choose p such that: Cf= ,I;,/Cp, Jir 2 4 and eliminate variables

lp+l,...,lp
continue OCD

else continue GBP

Pruning starts early if fi2 is large, late otherwise. Bot.h parameters 8, and 4 are
determined by cross-validation.

To assess the quality of the selection, we should think of the practical use of
variable selection: typically one uses a relatively small data set, to decide upon the
best subset of variables; then one gathers a larger data set, where only the selected
subset of variables is measured, and train a network on this data set. If the selected
subset is good, the new network (trained on smaller dimension inputs) should be as
good - or even better - than the original network trained on the full dimension
inputs.

T. Cibas et al. /Neurocomputing 12 (19%) 223-248 233

Fig. 5. Final MSE and selected variables for time series after OCD.

selected set 461 IO 46127 -- .f~!..!-““.. ” L*.&..- _.-.LL”L.“L.“.....“.. -
Net 3-7-l 4-7-l 5-7-I 10-7-l 12-1

D’ ,)I 0.04553 0.04495 0.0446S 0.04359 0.04461

0; 0.04851 0.04790 0.04832 0.05049 0.04629

@I* 0.04533 0.04488 0.04451 -0.04672 0.04209

Fig. 6. Performances of networks retrained on the selecfed sets of variables for Time series.

4.2. Time series

For time series we ran our OCD algorithm with Tl = 5 and cx = 3/4 (as
determined in Section 3.2). Results are shown in Fig. 5: for the optimal values
4 * = 0.99 and 8, = 0.05 or 0.1, our variable selection procedure has selected the
appropriate variables x,-6, xI_+ x,_~: (variables 1, 4 and 6 in Fig. 5).

Fig. 7. Final MSE and selected variable number for Wavefoims after OCD.

234 T. Cibas et al. / Neurocomputing 12 (19%) 223-248

Fig. 8. Selected variables for the different selection methods on Waveforms. M-X: method M on
network X(X = 40-10-3 or 40-3). OCD: OCD (Section 4.3); WD: simple Weight Decay (Section 5.2.2);
RegCV: regularization with Gaussian mixture (Section 5.3.2); Reg.Est: regularization with hyperparam-
eters estimated during training (Section 5.4.2).

As can be seen in Fig. 5, pruning variables also has the side effect of decreasing
the final MSE.

The s t e p w i se procedure in SAS also selected the set of variables 1, 4, 6 (see
Appendix 2). From which it follows that OCD has similar performances as SAS
s t e p w i s e (in terms of the selected subset): in fact, OCD is less efficient, since it
requires quite a large overhead in computing time.

Fig. 6 shows the benefit of variable selection: network 3-7-l retrained with only
the selected variables achieves a lower final MSE than the original net 10-7-l.

Fig. 9. Performances of networks retrained on the selected sets of variables for Waveforms. The left
column x designates the set of variables selected by the corresponding method (Fig. 8). Columns ‘set’ -
3 (resp. ‘set’-10-3) give the performances of network y-3 (resp. y-10-3), where y is the number of
variables selected in set x. Networks y-3 and y-10-3 are retrained on set n.

T. Cibas et al. /Neurocomputing 12 (1996) 223-248 235

0 hias V,,

I b W

V
P

P inpuls h hidden units

Fig. 10. MLP used to produce our predictor.

4.3. Waveform

For the waveforms, we ran our OCD algorithm with values of Tr and cx as
determined in Section 3.3, both for network 40-10-3 and 40-3. Results are shown in
Fig. 7: for the optimal values q * = 0.985 and 8, = 0.01, our variable selection
procedure selected 14 variables among the 21 first - the signal - (the same for
both networks, except for one variable) and eliminated all the noise (the 19 last
variables): see Fig. 8. Note that SAS did not succeed in eliminating all the noise.
Error bars are computed as indicated in Annex 3.

As can be seen in Fig. 9, variable selection increases performances by more than
4% compared to SAS selection.

5. Regularization

5.1. Introduction

We will restrict our analysis here to the case of a multilayer perceptron (MLP)
with only one hidden layer, and full connections. Extension to more complex
architectures is straightforward although its application may be more difficult. Let
us suppose that our MLP (Fig. 10) has P inputs, h hidden units and p output
units, and denote V, resp. W, the weights from input to hidden, resp. hidden to
output layer and V’ the bias vector to hidden units (W includes the bias to the
outputs). y is thus the weight vector exiting from unit i discarding feature i is
equivalent to setting V;: to 0.

With these notations, Eq. (2.6) becomes:

1 m
M(&.‘,, v, W) = 2a2 kXIIIF(X’) -ykl12-ln P(V,, V, W) (5-l)

We will use two different priors P<V,, V, W): a Gaussian and a Gaussian
mixture.

236 T. Cibas et al. /Neurocomputing 12 (1996) 223-248

5.2. Simple weight decay

5.2.1. The algorithm
To select input variables, we will take

This is almost identical to weight-decay, except that we only constrain the input-

a Gaussian for P(V), i.e.:

(5.2)

to-hidden weights, and not the other weights. This reflects our goal of pruning
those weights, while we do not have, a priori, any constraint on the remaining
weights.

Our variable selection technique run as follows: first use a R e g u 1 a r i z a t i on
algorithm, then a Variable selection algorithm. In the Regularization
algorithm, we first start by a few steps of the usual Square Error cost (to start
fitting the data), then move on to the regularized cost function M of 6.1):

Regularization
l run N steps of on-line GBP with E = &a and cost function C.
0 from now on use cost function M.
@while E>E~ do

(5.3)

run on-line GBP with E
i f r(W, Ok, t, Tl) I -8,

then dt + 1) = ax(t) e 1 se dt + ll= e(t)
endwhi le

where r is defined as before by (3.11, i.e. using function C.
This algorithm is executed, with the values of N, Ti and a as set by cross-vali-

dation after GBP (see Section 3.2.1, for the given values of &a, or and 8,. The first
N steps are exactly as before; from N on, regularization starts.

Let A = a2/c$, this parameter must be estimated from the data. Usually we
have no knowledge about u, so we used cross validation to set parameter A*, by
comparing the MSEs on 0; and selecting the parameter value corresponding to
the minimum error on 0;. From now on, cost function M will use that value of
*
h .

Let us then define, for every input variable i, its weight variance uar,. ~a r i -
a b 1 e s e 1 e c t i on is run as follows (5.4): p variables are selected so as to retain a
proportion 4 of the total variances uar,. GBP and V a r i a b 1 e se 1 e c t i on are
thus alternated until the stopping criterion for GBP is met. q is set by cross
validation:

Variable selection
l order variances: uari, r uariz 2 . . . 2 uarip
l choose smallest p such that: C$=ruarik 2 qCi=ruarik

(5.41

T. Cibas et al./Neurocomputing 12 (19%) 223-248 231

Fig. 11. Weight Decay on Time series: determination of A’ after Regu 1 a r i z a t i on and q l after
~a r i a b t e se 1 et t i on. The subset of variables selected in each case is shown in the bottom lines.

l eliminate variables i, + I to i,
0 run N’ steps of on-line GBP with E = Em and’ cost function M.

5.2.2. Time series
Results are shown in Fig. 11.
Results (Fig. 6) show that our WD-based selection indeed worked well. If we

use as inputs the variables selected by WD (from results shown in Fig. 11, we have
selected the 4 variables x+~, x~_~, x,-r and xt_rO), and retrain a network 4-7-l
with only these inputs, we obtain a final MSE lower than both the initial 10-7-l
network and the network 3-7-l retrained on the variables selected by SAS or OCD
(for an analysis of the significance of these results, see Appendix 3 where error
bars are provided).

It might seem strange that the best choice would be to select, beside the obvious
variables x,_~, x,_~, x,_~, variable xI_ro also, which does not appear in the
expression of (3.2) for y,. However, if one writes expression (3.2) for variable x+~,
variable x, _ i. will indeed appear: in fact x,_ i. is implicitly present in variable y,,
and our selection process has been able to take advantage of this implicit
correlation.

Fig. 12. Weight Decay on Waveforms: determination of A’ after Regu 1 a r i z a t i on and q * after
~a r i a b t e se t,e c t i on. The upper part of the table corresponds to net 40-3, the lower part to
40-10-3. The number of variables selected in each case is shown in the bottom lines (NbSelVar).

238 T. Cibas et al. /Neurocomputing 12 (19%) 223-248

These results also shed light on the validity of our a-priori assumption on the
weights: a Gaussian prior is certainly reasonable, since it allows us to improve on
our predictor’s accuracy. The question is now to see whether we could find a better
prior: we will turn, in Section 5.3, to a Gaussian mixture prior.

5.2.3. Waveforms
Results in Fig. 12 show the performances of our WD-based selection. Note that

the Weight Decay technique selected more variables than OCD or SAS, although
always in the ‘signal’ part: it made use of these for increased performances on test
set. The Gaussian prior assumption is in this sense validated.

5.3. Gaussian mixture prior

5.3.1. The algorithm
Assume a priori that weights V and W are independent (which is not true any

more as soon as learning starts!) and that W, resp. V, is Gaussian N(0, a;), resp.
N(0, ai>. F’s are supposed to be independently distributed with a Gaussian
mixture of two components: one - in proportion P - MO, of) has a large variance
a: and the other - in proportion (1 - TTT) - N(O, a:> a small one a:. Under these
assumptions, we have:

In P(V,, I/, W) a -

1 (5.5)
M(Vb, V, W) is minimized, through an on-line GBP (see Section 3). We have to
determine the following parameters: a$, a:, a:, ai, r, 4 and u*. There do not
exist, at the present moment, exact techniques to compute optimal values of the
hyperparameters: the Bayesian optimization approach 1241, for example, relies on
assumptions and is very computation expensive.

We have tested various methods to determine the hyperparameters: fixing some
and determining the others by cross-validation or fixing some and estimating
others. We describe some results of these different techniques in the following
paragraphs.

Fig. 13. Time series: determination of P * with R e 9 u 1 a r i L a t i on (with Gaussian mixture) and of q *
withvariable selection.

T. Cibas et aL /Neurocomputing 12 (199~5) 223-248 239

X3.2. Time series
In this paragraph, all hyperparameters are held constant (a$ = a: = ui = 1, a:

= O.OOS>, while weights V and W are updated; T, u2 (in 5.1) are set by cross-vali-
dation during algorithm Regu 1 a P i z a t i on: only results with the best u2 are
given. Then, as for weight decay, the v a r i a b 1 e s e 1 e c t i on algorithm is run
and 4 is set by cross-validation. Results are shown in Fig. 13.

Comparison of performances of the net 5-7-l retrained with the selected
variable subset (Fig. 6) shows that, finally, it is the set of variables selected by this
Gaussian mixture regularization which gives the best performances on test set. The
analysis of error bars (see Appendix 3) shows that net 5-7-l has an MSE
significantly smaller than that of net 3-7-l: thus our variable selection approach
with regularization and a Gaussian mixture prior improves upon both OCD and
stepwise.

Notice that our technique has learned to use both ‘explicit’ variables 4, 6 and 1

(X,-J, xt-6, x,-r) and ‘implicit’ variables 2, 7 (x,_~, x,_?) coming from Y~_~.

5.3.3. Waveforms
For this problem, we have tested the effectiveness of cross-validation for setting

the mixture parameters. Hyperparameters T and u2 are thus fixed; uf, u,” (and
a& for net 40-10-3) are determined by cross-validation with R e g u 1 a r i z a t i on
and q with Variable selection. In this case, best performances were ob-
tained for very high values af the variances, which is equivalent to zeroing the
mixture a priori hypothesis (third term of Eq. (5.5) right member). Cross-validation
thus converged to a trivial solution where no regularization is used for the input to
hidden weights. One reason may be that in this case, variable selection is relatively
easy and simple procedures like V a r i a b 1 e s e 1 e c t i on perform well enough.
Note however that this is not the case with the default stepdisc SAS procedure
which has been used here.

5.4. Hyperparameters estimation

Normally all parameters should be set appropriately. Various methods exist:
learning, estimation, cross-validation or exact computation, e.g. through bayesian
theory [25]. Cross-validation, which we have used in this paper, is very computation

Fig. 14. Time series, final MSE reached after Rcgu 1 a r i za t i on, when parameters are set by
cross-validation (left) or estimated (right).

240 T. Cibas et al. / Neurocomputing 12 (1996) 223-248

Fig. 15. Time series, weight variances of input units after training with R e g u 1 a r i z a t i on.

intensive. One can thus try to estimate some of these parameters. We have
estimatdd hyper-parameters for the two problems. We present below an example
of such an approach for time series. This approach worked well also for the
classification problem but gave performances similar to the other methods (see
Figs. 8 and 9).

For the time series, we set uw- * - a: = 1 fixed a priori. We then train N steps
with cost function C. We then use as an estimate for a* the MSE on Ok, a new
estimate being computed after each epoch. a,* is progressively decreased through
learning. Results (Fig. 14) are very good in terms of final MSE, as compared to the
final MSE obtained after R e g u 1 a r i z a t i on for our previous setting of parame-
ters.

In addition, if one look at the weights variances uuri of the 10 input units, one
can easily select the most significant variables: since there is at least a 4 order of
magnitude difference (see Fig. 15).

However, we see that the algorithm has just picked the ‘obvious’ solution, and
not the better ones found out by the previous methods. Additional work is
certainly needed to explore more systematically the various methods for hyper-
parameters setting.

6. Conclusion

We have presented here a technique based on regularization for variable
selection, with two different regularizing terms, coming from different hypothesis
on the weights priors (Gaussian and mixture of Gaussian& The regularization with
gaussian mixture gave the best final performances on test set for a synthetic time
series example, as compared to the WD-based method, a conventional statistic
method (s t e pw i s e in SAS) or a pruning method (OCD).

For the classification example, the three NN based methods gave similar
performances, and are significatively better than standard classical techniques.

The methods we propose still suffer from various problems:
- There are many parameters which have to be set by cross validation. This is far

too computation intensive in practical problems. In particular, our version of
GBP should be replaced in the case of approximation or identification problems
such as the time series in this paper, by a parameter-free technique, e.g.
conjugate gradients [28].

- The results are very sensitive to the a priori choices of parameters (e.g.
u*, a&, a:, $1.

T. Cibas et al. / Neurocomphng 12 (1996) 223-248 241

- Input correlation is not taken into account, which means that even linearly
dependent parameters may be selected.

Appendix 1. Stepwise procedure

Let k s N be the size of feature space at some given time: we want to know
whether to retain all k variables or discard k - q of them. Let F be defined as:

F= m-k IIf&- II*
k-q IIY-fk II* ’ (A4

where _Y is the sample output vector (Y ‘, . . . , YV, 2, i = q, k, is the estimation
produced when using i variables:

g= (F,(X1),...,F,.(X”))f (A4

Let 8, be given by:

P(F>Q=a (A.9
where F is a Fisher-Snedecor variable with (k - q, m - k) degrees of freedom and
OL is some confidence level (e.g. (Y = 0.95). Then, if the measured ratio F (A.11 is
larger than f3,, all k variables are kept, otherwise q variables only are: this is a
F - t e s t of the null hypothesis H, that the k - q variables are significant.

F>8, accept H,: use all k variables (A4
F-CO, reject H,: use q variables, reject the other k - q variables

For a given size n of the feature space, selecting the best subset x of n features
out of the N possible (X1,. . . , XN) is a combinatorial search problem (there are
(N!)/(n!(N - n)!) such subsets). So exhaustive search is not feasible. If the feature
selection criterion J is monotonous, that is:

K,CN,C **a CK,=4(N,) <J(K*) I . . . I.&.) (A-5)
where N, contains k variables Xi, then a simple branch-and-bound algorithm [19]
allows to restrict the search and efficiently come up with an optimal feature vector.
However, most selection criteria are not monotonous, and thus only suboptimal
procedures are known.

For example, the sequent i a 1 forward method progressively builds up a
vector x, from the empty set, by adding one feature at a time, selected to maximise
criterion J. More precisely, if N, is the feature vector at instant k, a feature xk + 1
is selected in X- K, so that:

J(N,u {‘k+l)) =x,~~~x j(‘k” {‘iI) (A-6)
k

The se q u e n t i a 1 b g c k u a r d technique is similar, in opposite direction: start-
ing from the complete vector X, features are eliminated one at a time so as to
maximise the criterion:

J(Kn-k - Ix/c+ll) =x ~Rax_kJ(x~-k - Ixil)
1 N

(A.71
where K,_, is the feature vector at iteration k.

242 T. Cibas et al. /Neurocomputing 12 (19%) 223-248

Vanable * F.Villur: P> F
6
1 --‘!&y___--_ ._____.$y
4 6.46 0.01 IS

Fig. 16. Stepwise procedure. P > F is the probability that the F stat. is superior to the F value.

The F-factor can be used as a criterion J; Eqs. (A.6) and (A.71 then become:

where Kk C Xb+l = Xk U {xi} and &, resp. $j+r, is the estimator produced using
variables in Nk, resp. Eli+r.

Fi=(m-N+k)
II&-k -&,-k-l iI2

II~-&-k II2 ’
xk+l=ATg max Fi

Xi”X,_,
(A.9)

where RN_, 1 Nh._k_r = RN_, - {Xi} and. &_k, resp. ?&-k-r, is the eStimatOr

produced using variables in XN_k, resp. XL_,_,.

The s t e p w i s e starts from an empty variable subset, and then alternates the
sequential forward and backward procedures. We run these procedures
with a confidence level of 0.85, and entering/eliminating one variable at a time.

For example, the s t e p w i s e procedure enters the variables as shown in Fig. 16,
and then no other variable met the 0.85 confidence level for entering or exiting the
model.

Stepdkc procedure

The Stepdisc procedure implemented in SAS for selecting variables for discrimi-
nation tasks relies on the hypothesis that the classes are multi-normal with equal
covariance matrices. The criterion for variable selection is the minimization of
Wilks’ lambda A,: for 4 variables,

IW, I
*,= ITJ

where Wq, Tq are respectively the within and total covariance matrices. We have
used the stepwise version of Stepdisc which alternates forward and backward
selection. It is possible to devise an F-ratio which is equivalent to the use of Wilks’
statistic. Significance levels were set at the same values as above, Stepdisc selected
14 variables (see Fig. 8). Fig. 17 gives the variables selected and the values for F
and the associated confidence value.

Appendix 2. Saliency

The usual cost function is defined as:

C(W,D,)=$~llF,(x”)-ykI12
k=l

(A.lO)

T. Cibas et at! / Neumcomputing 12 (19%) 223-248 243

Fig. 17. Stepdisc results on the waveforms. P > F is the probability that the F stat is superior to the F
value.

To order 2, the cost function C of Eq. (A.10) can be approximated, around a
minimum W, by:

C(W) =C(W,) + (W- W,)‘*VC(W,)

+&V- W,)‘*H(W*) *(W-W,) +o(IIW- W, II’)

or, since W, is a minimum

C(W) = C(WO) + $CHiiAy’ + $cHijAyAy + u(II W- W,, II “)
i ij

where AW= W- W,.
If we assume that the Hessian can be approximated by a diagonal matrix, and

that the cost is locally quadratic, then we obtain:

C(W) = C(W,) + +miiAK2
i

and the saliency of weight i is thus:

si = $4~2 = ;
a2C
---q2
aiq2

(A.ll)

Appendix 3. Error bars

Prediction

Our method to compute error bars is based on a technique introduced in 1121: if
one assumes a probability distribution on Neural Network weights, then this
induces a probability distribution on the NN outputs. The variance of this distribu-
tion provides error bars on the outputs. It is then easy to use those to provide error
bars for other measures, such as e.g. MSE, or arv.

Suppose that weights follow a Gaussian distribution, IocaIly around a minimum
W, (this is a common assumption, see e.g. [23,24]):

p(W) r ,e-P~+Hiiiiw: (A.12)

244 T. Cibas et al./Neuroconaputing 12 (1996) 223-248

where notations are as in Appendix 2, CY and B being hyper-parameters which have
to be determined.

Using results in [23,24], the regularizing hyper-parameter p can be estimated
by:

mQ
@* = 2C(W,, qJ

(A.13)

Q is the output dimension; in this paper, we have Q = 1.
Then, assuming that the output is linear (as is our case in this paper), [12] show

that, for every input x
variance a$ given by:

k, the outputs follow a Gaussian with mean FN(xk) and

2 _- r.w
ajk -VT j= L.,Q

ii

(A.14)

where rji(k) is the gradient of the output FN(xk) with respect to weight Wi, and
the Hessian is evaluated for input vector x k. The error bar on output j k thus (Iljk.

It then follows that the MSE on data set can be bounded in the interval:

I(D) = pm-A_, MSE+A+]
where:

A_=; c IFN(Xk) -Ykh

W,Yk)ED

Net Set MSE MSE- A MSE+A.+

12-1 D!, 0.0446 I 0.04439 0.04484

D,Y, 0.04629 0.04606 om653

#I, w4209 0.04188 0.0423 1

11%7- 1 D;,, 0.04359 0.043 I 1 0.04405

%I 0.05049 0.05oc)4 0.05101

% 0.04672 0.04625 0.04720

3-7-1 ol,, 0.04553 0.04524 0.04582

DI, 0.04x5 I 0.04822 0.04881

D:r, O.WS.73 o.wso5 0.04562

4-7-l D!, 0.&49s O.W463 0.04527

QY, OS)4790 0.04758 0.04823

@,I 0.04488 O.O4456 0.04521

5-7-I Q! 0.04465 w4430 0.04500

N* 0.04832 0.04796 0.04867

r>l,, O.ll445 I 0.04417 0.04486

Fig. 18. Error bars on MSE for the various networks found in the paper.

(A.15)

T. Cibas et al. /Neurocomputing 12 (1996) 223-248 245

Fig. 19. Confidence intervals for the networks retrained with the variables subsets, selected by OCD -
or stepuise - RegularizationwithweightdecayorwithaGaussianmixture.

where 0~~ is the expression given in (A.141, where index j has been dropped, since
we only have one output <Q = 1).

These error-bars are not exact: they rely on various assumptions made along the
above derivation. However, we have usually found these error bars correct on
prediction problems 1211.

We give below (Fig. 18) the various intervals found for the networks described
in the paper.

These error bars demonstrate (Fig. 19) that:
- variable selection by OCD - or the s t e pu i se technique - is significantly

worse than by R e g IJ 1 a r i z a t i on with a Gaussian mixture.
- variable selection by OCD - or the s t e p w i s e technique - is not significantly

worse than by R e g u 1 a r i z a t i on with Weight Decay.
- variable selection by R e g u 1 a r i z a t i on with a Gaussian mixture is not signifi-

cantly better than by R eg u 1 a r i z a t i on with Weight Decay. The two priors on
weights lead to similar results.

Classification

Let p be the classification error and f the observed frequency, p can be
considered as a proportion for a binomial law. Under a normal assumption, the 1-a
confidence interval P(p, <p <p2) = 1 - OL is given by:

2f+-
“> +u.,/-Gfyj

Pl =
d/2

2 l+- (1 N

2f+ “p ua,2/w

and p2 =

,(I+%)

246 T. Cibas et al. /Neurocomputing 12 (1996) 223-248

Fig. 20. Confidence intervals for the waveforms classification problem. # nb gives the size of the
corresponding set.

where N is the population size and u,,~ is the fractil of the normal law at risk
(r/2. Values of pl, p2 for the different set sizes are given in Fig. 20.

References

[l] H. Akaike, A new look at the statistical model identification, IEEE Trans. Auto. Control 19 (1974)
716-723.

[2] R. Battiti, Using mutual information for selecting features in supervised neural net learning, IEEE
Trans. NN 5 (4) (1994).

[3] C. Bishop, Exact calculation of the Hessian matrix for the multilayer perceptron, Neural Camp. 4
(1992) 494-501.

[41

151
Kl

171
181

t91

HOI

1111

[121

[131
[I41

M. Bollivier de, P. Gallinari and S. Thiria, Cooperation of neural nets and task decomposition,
IJCNNPI, Seattle, vol. II (1991) 573-576.
G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison Wesley, 1973).
L. Breiman, J. Freidman, R. Olshen and C. Stone, Classification and Regression Trees (Wadsworth
Int. Group 1984).
W.L. Buntine and AS. Weigend, Bayesian back-propagation, Complex systems 5 (1991).
Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, in: Neural Informa-
tion Processing Systems, NIPS’88, D. Touretzky ed., vol. 1 (Morgan Kaufmann, 1989) 519-526.
Y. Chauvin, Dynamic behavior of constrained back-propagation networks, in: Neural Information
Processing Systems, Denver 1989, D. Touretzky ed. (Morgan Kaufmann, 1990) vol. 2,643-649.
T. Cibas, F. Fogelman Soulie, P. Gallinari and S. Raudys, Variable Selection with Neural Networks,
ICANN’94, Proceedings, M. Marinaro and P.G. Morass0 eds (Springer-Verlag, 1994) vol. 2,
1464-1469.
T. Cibas, F. Fogelman Soulie, P. Gallinari and S. Raudys, Variable Selection with Optimal Cell
Damage. ICANN’94, Proceedings, M. Marinaro and P.G. Morass0 eds (Springer-Verlag, 1994) vol.
1,727-730.
J.S. Denker and Y. Le Cun, Transforming neural net output levels to probability distributions, in
Advances in Neural Information Processing Systems, R. Lippmann, J. Moody and D. Touretzky eds.,
vol. 3 (Morgan Kaufmann, 1991) 853-859.
R.O. Duda and P.E. Hart, Pattern Recognition and Scene Analysis (Wiley, 1973).
W. Finnoff, F. Hergert and H.G. Zimmermann, Improving model selection by nonconvergent
methods, Neural Networks 6 (6) (1993) 771-783. - .___\

[IS] K. Fukunaga, Statistical Pattern Recognition, 2nd ed. (Academic Press, 1YWI.
1161 J.D.F. Habema and J. Hermans, Selection of variables in discriminant analysis by F-statistic and

error rate, Technornetrics 19 (4) (1977).

T. Clbas et al. /Neurocomputing 12 (1996) 223-248 247

[17] S.J. Hanson and L.Y. Pratt, Comnarina biases for minimal network construction with back-propa-

M

[I91
DOI

ml

WI

1231

PA
WI

LW
[271

@I
1291

[301

[311

WI

gation in: Neural Inform&on Phcesskg Systems, NIPS%), D.S. Touretzky ed., (Morgan-Kauf-
mann, 1989) vol. 1, 177-185.
B. Hassibi and D.G. Stork, Second order derivatives for network pruning: Optimal brain surgeon,
In Neural Information Processing Systems, NlPS92, S.J. Hanson, J.D. Cowan and CL. Giles eds.
(Morgan Kaufmann, 1993) vol. 5, 164-171.
P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice-Hall, 1982).
E.D. Karnin, A simple procedure for pruning back-propagation trained nural networks, IEEE
Trans. NN 1 (2) (1990) 239-242.

A. Kouam, Approches connezionnistes pour la p&vision des s6ries temporelles, Thhse, Universite
de Paris-Sud, 1993.
Y. Le Cun, J.S. Denker and S.A. Solla, Optimal brain damage, in: Neural Information Processing

Systems, NIPS’89, D. Touretzky ed. (Morgan Kaufmann, 19901 vol. 2, 598-605.
D.J.C. McKay, A practical bayesian framework for backpropagation networks, Neural Computation

4 (1992) 448-472.
D.J.C. McKay, Bayesian interpolation, Neural Computation 4 (1992) 415-447.
D.J.C. McKay, Bayesian non-linear modeling for the energy prediction competition, Tech. Rep.,
University of Cambridge, 1993.
A.J. Miller, Subset Selection in Regression (Chapman and Hall, 1990).
T.J. Mitchell and J.J. Beauchamp, Bayesian variable selection in linear regression, JAVA 83, (1988)
1023-1036.

[331
[341
[351

[361

[371

M. Moller, Efficient training of feed-forward neural networks, Thesis, Univ. Aarhus, 1993.
MC. Mozer and P. Smolensky, Skeletonization: a technique for trimming the fat from a network
via relevance assesment, NIPS 1 (1989) 107-115.

S.J. Nowlan and G.E. Hinton, Simplifying neural networks by soft weight-sharing, Neural Compu-
tation 4 (1992) 473-493.

F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures,
Neural Computation 7 (2) (1995) 219-269.

D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error
propagation in Parallel Distributed Processing. D.E. Rumelhart and J.L., McClelland eds., (MIT
Press, 19861 vol. 1, 318-362.
SAS/Stat User’s Guide, version 6, 4th ed.
G. Schwarz, Estimating the dimension of a model. Anna& of Statistics, 6-2, (1978) 461-464.
H.H. Thodberg, Ace of Bayes; application of neural networks with pruning, Tech. Rep. n”1132E,
Danish Meat Res. Inst., 1993.
M.L. Thompson, Selection of variables in multiple regression: Part 1 & 2, ht. Stat. Reu, 46 (1978)
1-19 & 129-146.

A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Generalization by weight elimination with
application to forecasting, In: Neural Information Processing Systems, NIPSW. R.P. Lippmann,
J.E. Moody and D.S. Touretzky eds., (Morgan Kaufmann, 1991) vol. 3, 875-882.

Tautvydas Cyhas got an M.S. degree in applied mathematics from university of
Vilnius (Lt) in 1990. He then joined the Institute of Mathematics and Informat-
its at Vinius and is currently working through his Ph.D. at the University of
Orsay (Fri. His main interests are in statistical aspects of neural networks.

248 T. Cibas et al./Neurocomputing 12 (1996) 223-248

Franc&e FogeIman Sodie got her Ph.D. in Computer Science from the
University of Grenoble. A former professor at the University of Paris-Sud-
Orsay, she co-founded Mimetics-sa, a start-up in neural networks and later-on
joined Sligos-sa, where she is now head of the Pattern Recognition Laboratory.
Her research interests are in developing neural networks algorithms for image
processing, optical character recognition and time series prediction. She is a
member of IEEE, of the Board of Governors of INNS and of ENNS. She is a
member of the Scientific Committee of France Telecom, an expert for the
European Commission and Chevalier des Palmes Academtques.

Patrick Gallhri received the PhD degree from the University of Compiegne
(Fr) in 1986. He is Professor at Laboratoire Formes et Intelligence Artificielle,
University Paris 6 (Fr). His main research interests are in neural networks,
pattern recognition, symbolic-numerical systems. He is a member of the board
of ENNS.

Sarunas J. Raudys was born in Kaunas, Lithuania, on February 24, 1941. He
received the M.S. degree in electrical and computer engineering from Raunas
Universitv of Technoloav in 1963. and the Candidate of Sciences and Doctor of
Sciences degrees from &e Institute of Mathematics and Cybernetics, Academy
of Sciences, Lithuania, in 1%9 and 1978, respectively. He is currently a Head of
the Data Analysis Department in the Institute of Mathematics and Informatics,
Vilnius, Lithuania. His current research interests include multivariate statistical
analysis, pattern recognition, artificial neural nets, machine learning and data
analysis methods. Prof. Raudys is a member of the New York Academy of
Sciences, an Associate Editor of Pattern Recognition (J. of Int. Pattern Recog-
nition Society, Washington, DC) and Pattern Recognition and Image Processing
(J. of Russian Academy of Sciences, Moscow). He has been a member of the
Program Committee and an invited speaker in a number of international

