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Ahstraet 

In this paper, we present 3 different neural network-based methods to perform variable 
selection. OCD - Optimal Cell Damage - is a pruning method, which evaluates the 
usefulness of a variable and prunes the least useful ones (it is related to the Optimal Brain 
Damage method of J_.e Cun et al.). Regularization theory proposes to constrain estimators 
by adding a term to the cost function used to train a neural network. In the Bayesian 
framework, this additional term can be interpreted as the log prior to the weights 
distribution. We propose to use two priors (a Gaussian and a Gaussian mixture) and show 
that this regularization approach allows to select efficient subsets of variables. Our methods 
are compared to conventional statistical selection procedures and are shown to significantly 
improve on that. 

Keywords: Variable selection; Regularization; Neural network pruning, Dimensionality 
reduction 

1. introduction 

Neural Networks - NNs - are used in quite a variety of real-world applications, 
where one can usually measure a potentially large number P of variables Xi. 
Usually not all Xi are equally informative: there may be noisy components, some 
Xi maybe irrelevant to the problem or redundant when correlated. For small data 
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sets, better performances may be obtained by discarding even informative vari- 
ables. In many practical applications, if one could select p a P ‘best’ variables Xi, 
then one could reduce the amount of data to gather and process while possibly 
increasing performances. Variable selection is thus an important issue in NNs. It is 
also a complex problem; one needs a criterion to measure the importance of a 
variables subset and that value will, of course, depend on the predictor or classifier 
further used: a subset of variables could be optimal for one system, and very 
inefficient for another; an optimal subset of size p might not contain all variables 
of a smaller subset (non-rnonotonicity). Conventional variable selection techniques 
are based upon statistical or heuristic tools [15,16,36]. The major difficulty comes 
from the intrinsic combinatorics of the problem with the consequence that only 
approximate methods, based on heuristic measures of variable importance, can be 
used for large size problems. Most often, selection and data processing, e.g. 
classification, are treated sequentially and the adequacy of the selection criterion 
to the classifier is up to the user. Using NNs for variable selection is attractive, 
since they have the potential for simultaneously performing classification or 
approximation and variable selection: variables will thus be selected so as to 
optimize the training criterion. 

In this paper we will present two methods for variables selection through NNs. 
Both are sub-optimal since they rely on heuristics, they are aimed at practical 
applications. 

The first one is based on the evaluation of a variable usefulness. Various 
methods have been proposed to assess the value of a weight [29,20,22]. Using ideas 
similar to [22], we derive a method, called Optimal Cell Damage - OCD - which 
evaluates the usefulness of input variables in a Multi-Layer Network and prunes 
the least useful. Variable selection is thus achieved while training the classifier, 
which ensures that the selected set of variables is adequate for the classifier. 
Variable selection is viewed here as a rather straightforward extension of weight 
pruning. 

The second approach makes use of regularization terms under a Bayesian 
interpretation (Gaussian and Gaussian mixture priors) and shows to discard, 
during training, the least useful variables. Regularization and Bayesian training 
have been used recently in a variety of settings in NNs [32,17,37,231. 

When implementing these methods, one has to decide on several options: when 
to start (pruning, or regularizing), how much (how many weights, or with how large 
a regularizing factor), which training algorithm to choose for ensuring the quality 
of the selection, and whether selection should be implemented as a ‘non-conver- 
gent method’ [14]. All of these decisions may indeed be important for the method 
applicability. In our tests, we discuss these issues. 

We compare the performances of the two methods to the standard SAS stepwke 
and stepdisc procedures. This comparison is performed on two different tasks: a 
prediction problem for a synthetic time series and a classification problem from 161. 
Both tasks are relatively simple, yet representative of the two major classes of 
problems addressed by NNs; they also are complex enough for our results to be 
significant. 
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The paper is organized as follows: Section 2 introduces notations and results 
from the literature; Section 3 the problem used to test our methods, Section 4 
variable selection by OCD and Section 5 by regularization. 

2. Variable selection 

2.1. Definitions 

Let be given a random variable pair (X, Y) E II%?’ x Rip, with probability distri- 
bution P. Based on a sample D,,, = {(x1, y’). . .(x’@, y”)}, drawn from (X, Y), we 
train an NN to capture the relation between X and Y, i.e. to produce an estimator 
F, the NN approximation to the expectation E[Y/X]. We will deal in the following 
with prediction and classification tasks. The problem in variable selection is to 
extract the best set of features from an original input space, and possibly deter- 
mine the optimal number p * of features, for a given criterion: some components 
of the original input XE BP are eliminated to produce a vector with p features 
x E BP, p I P. Training will be performed here according to a mean square error 
(MSE) criterion or an extended MSE criterion in the case of the Bayesian 
approach. We will use local criteria for ranking variables and perform selection 
during training. Efficiency of the selection will be measured through the empirical 
prediction error, 

2.2. Statistical methods for uariable selection /extraction 

Feature selection has been extensively studied in the statistical or pattern 
recognition literature [15,26,27]. A feature selection technique typically requires 
the following ingredients: 
- a feature evaluation criterion J to compare feature vectors x E BP, 
- a search procedure, to search the set of possible feature vectors x, 
- a stop criterion, which could be a significance threshold in criterion J or the 

final feature space dimension. 
Depending on the task (e.g. prediction or classification) and on the model 

(linear, logistic,. . . >, several evaluation criteria, based either on sound statistical 
grounds or heuristics, have been proposed for measuring the importance of a 
variable subset. For classification, classical criteria use probabilistic distances or 
entropy measures, often replaced in practice by simple interclass distance mea- 
sures or even simple distances. For approximation or prediction, classical candi- 
dates are distance measures [19]. 

In general, these evaluation criteria are non monotonic, and exact comparison 
of feature subsets amounts to a combinatorial problem, which rapidly becomes 
computationally unfeasible, even for moderate input size. Due to these limitations, 
most algorithms are based upon heuristic performance measures and sub-optimal 
search. There are various procedures: in the forward selection method, vector x is 
progressively built up, by starting with the empty set and adding one or a few 
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features at a time; the backward elimination technique works in the opposite 
direction: features are progressively eliminated from X one at a time. 

Stopping the process is usually based on the evaluation criterion or on tests; one 
can also use a criterion for trading between complexity and accuracy such as AIC 
[ll or BIC [341. 

In the following, our testbed will be the stepwise and stepdisc procedures 
implemented in SAS. Both alternate forward and backward selection, the evalua- 
tion criterion is the Fisher-Snedecor ratio, an F-test of the null hypothesis H, that 
all selected variables are significant (see Annex 1 for the description of these 
procedures). 

In the NN literature, variable selection methods using entropy measures for 
feature evaluation have been proposed e.g. [2] they are based on the same ideas as 
the classical methods mentioned above and selection is performed prior to learn- 
ing. The techniques we propose here are different in that they do selection after a 
first training step has been performed. They should be able to take into account 
the variable dependencies which have been estimated after training the system 
which will be used further on. 

2.3. Neural network methods for sensitivity analysis 

Various authors have proposed methods to prune useless connections so as to 
ensure correct generalization through the control of the network complexity [9,37]. 
We will focus here on the Optimal Bruin Damage technique [22]: the saliency of a 
weight is defined as the cost variation resulting from the weight suppression. 

Let N be a Neural Network picked from a family of multi-layer networks and 
0, the learning set of size m. We use the Squared Error - SE - defined as: 

k=l 
(2.1) 

where F,<xk> is the computed output for input xk, y k the desired output, and F,,, 
the global transfer function realized by Network N. 

The Mean Square Error - MSE - is then defined as: 

(2.2) 

L.e Cun et al. [22] have shown that, if the Hessian can be approximated by a 
diagonal matrix, and the cost is locally quadratic, then the saliency of weight i is 
approximated, locally around a minimum W,, by: 

1 a*c 
si = $Hiiw;:2 = - -W;:2 

2 awi2 (2.3) 

which can be computed by an additional backward pass to the usual Back-propa- 
gation algorithm (see Appendix 2). Exact methods could be used to compute the 
Hessian, instead of assuming diagonality [3,18]. 
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The weight of smallest saliency is the weight whose pruning will least increase 
the cost. Notice that OBD explicitly requires that the network has reached 
convergence to a minimum W,. 

2.4. Neural networks and regularization 

The regularization framework has provided another bunch of practical methods 
to handle the problem of poor generalization [31]. It considers estimation with too 
few and noisy data as an ill-posed problem, whereas constraints must be imposed 
on the final solution so as to make the problem well-posed. These constraints are 
usually implemented as follows. For an input xk, desired output yk and computed 
output F(xk), we train the network to minimize: 

M(W) = a C( w, 4) + PEW(W) (2.4) 
where C(W, 0,) is as in (2.1) and the regulatiation term E,(W) embodies the 
constraints. Weight decay - WD - is the simplest regularization term used in the 
NN literature [32,37,8]: 

E,(W) =clq2 (2.5) 

Such constraints may be given a Bayesian interpretation [13,5,23,24]. In this 
framework, one looks for weights W which maximize the a posteriori distribution, 
conditioned by the observed data 0,; which is equivalent, if one assumes an 
additive Gaussian noise model N(0, u2) on data, to minimizing: 

M(W) = &(W, 0,) -In P(W) (2.6) 

If prior P(W) is taken to be gaussian NCO, a;), then the log prior is, up to a 
constant, just weight decay (2.5) (where I W I is the number of weights): 

Other assumptions on the weights prior can be made [7,30]. This Bayesian 
framework can be used for pruning [25,351. Regularization hyper-parameters cx 
and p have to be determined: they have an interpretation in terms of the data 
noise and weight variances. The full Bayesian approach can in theory provide for 
their automatic determination. However, for large dimensions, this approach is not 
efficient, so that usually, they are set by using some form of cross-validation. In the 
following, we use a regularized cost function to perform feature selection, with two 
different weights priors: Gaussian - WD - and Gaussian mixture. All hyper- 
parameters are determined by using a validation set. 

2.5. Summary 

Conventional techniques for variable selection are hindered by the non-mono- 
tonicity problem: heuristics guide both selection and stopping criteria. They usually 
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build-up features sets by including - or excluding - one - or a few - feature(s) at a 
time: because of non-monotonicity, this can lead to sub-optimal subsets. Various 
parameters have to be set a priori, e.g. the number of features ,added - or removed 
- at each step, the final features space size; significance level for selecting 
features.. . Final results can widely vary depending on the choices made. After 
selection has been made, classification or prediction may rely on totally different 
techniques. On’the other hand, the heuristic approach we propose here allows to 
carry on simultaneously variable selection and parameter estimation for the 
desired task: variables are selected globally to best fit the final estimator. However, 
NN training requires the setting of various parameters and hyperparameters in the 
case of regularization: no exact theory so far can provide for the exact setting of 
these parameters. One can resort to different heuristics to set them: trial-and-er- 
ror, cross-validation, estimation or learning. In the following, we will chiefly use 
cross-validation. Whatever the method selected, choosing the parameters usually 
requires a large amount of additional computations. 

3. Experiments setting 

In this section, we describe the version of Gradient Back Propagation - GBP - 
and the test problem we used. It is important here to describe the precise version 
of GBP which has been implemented since it may influence the quality of 
convergence and thus the feature selection process. For example, performances on 
our time series are very sensitive to GBP parameters. 

3.1. Training procedure 

We use three independent sets of respective sizes m,, m, and m,: DA, for 
learning, D;, for validation (i.e. set the parameters) and DA, for test. Our training 
procedure is an on-line GBP implemented as follows: the gradient step E is started 
from an initial value e0 and decreased as soon as the relative average cost variation 
becomes too small. It has been chosen here for its simplicity. 

GBP 0 run N steps of on-line GBP with E = E,,. 
0 while EWE* do 

run on-line GBP on 0; with E 
i f r(W, Di, t, T,) I O1 

then E(~+~)=cY.E(~) else ~(t+l)=df) 
endwhi Le 

where 

(34 
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Fig. 1. Time series zI from validation set D,$ 

r(W, D, t, T) is the relative average cost variation between epochs 0 - T to t - 1) 
and (t - T + 1 to t). C(W, D) is the error defined in (2.1). 

GBP thus depends on various parameters: Ed, &I and 6, being given, N, Tl and 
cx are set by cross-validation on the validation set, using the MSE criterion. The 
methods described below were found sensitive to the quality of local minima and 
thus to the above parameters. Note that such parameters do exist for any 
gradient-like algorithm. Weight initialization also influences the algorithm behav- 
ior, but this has not been considered here. 

3.2. Time series 

We have used a non linear synthetic time series yt, defined as follows: 

x, = 0.3x,_, -0.6x,_, -t 0.5x,_, + U, 

yr =x, + 0.3x:_, - 0.2x,2_, 

where U, is a white noise. 

(3.2) 

Three independent samples of size m = 1000 each are drawn from series y,: 
II;, 0: and 0;. Each sample set is normalized as follows: 
- the average 7 and variance s2 of set 0; are computed. 
- y, is then changed to z, = (y, -J)/(s), for all 3 sets Ok, 0: and 0;. 
Fig. 1 shows set 0;. 

Best performances on this series may be obtained with a linear network whose 
inputs are the predictors of (3.2). We have used a linear network 12-1 (with all 10 
input variables x, _ 1,, to x,__~ plus variables x;__~, and x:-J: variable selection 
should pick up the ‘true’ inputs x, _ 6, xt_+ xt_r, x:_~, x,“_~ since yt is linear in 
these variables. The final MSE should be approximately the variance of uI, i.e. 
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Fig. 2. Final MSE for time series, net 10-7-l (3 top lines) and 12-1 (bottom). 

0.04072 (after normalization of y,). This network represents the best possible 
performances and will be used here for comparison. 

Because in real situations we do not know the underlying structure of the series, 
we used for implementing our selection methods a network 10-7-l (with all 10 
variables x,_r,, to x,-r as inputs, 7 non linear hidden units and 1 linear output). 
Now, selection should pick up input variables (x,+, xt+, xt_r>. 

Results are shown in Fig. 2 for net 10-7-l and net 12-1. We use the MSE on 0: 
to choose the best parameter values for net 10-7-l (for the sake of simplicity, only 
results for choosing Tr and 01 are given; results allowing to choose N are of the 
same sort). Net 12-1 is very easy to train, and its performances are extremely 
robust with respect to parameters choice. 

Cross-validation gave (net 10-7-l) Tr = 5, N = 30, and OL = 3/4, for E,, = 0.1, &I 
= 0.0001, g1 = 0.0005. Values &a = 0.1, Ed = 0.000005, 8, = 0.000025 (to reach al- 
most perfect convergence), (Y = 0.875 were used for net 12-1, without doing any 
cross-validation there (see Fig. 2). 

Final MSEs at the end of GBP with net 12-1 were of order 45.10e3 (which is 
slightly larger than vu&), as expected). Errors bars on the final MSE should be 
computed. For more clarity in the figures, we have not given them in the text: the 
interested reader can refer to Appendix 3 where our technique for computing 
error-bars is described, together with a few results. The time series yt has some 
pseudo-periodic behavior, which results in 0; being very oscillating, and DA 
much smoother. This explains why performances on test set D& were often found 
better than on validation set DA. 

3.3. Waveforms 

We have extended a problem introduced in [61: 3 vectors or waveforms in 21 
dimensions, Hi, i = 1,. . . , 3, are given. Patterns in each class are defined in I?” as 
random convex combinations of 2 of these vectors (waves (1, 2), (1, 3), (2, 3) 
respectively for class 1,2 and 3, see Fig. 3) plus 19 additional noisy components [41. 
The problem is then to classify these patterns into one of the 3 classes. More 
precisely, patterns are generated according to: 

UHim + (1 - u)Hi” 
Xi = 

5 
+ Ei OSiI20 

Xi = Ei 21 Ii<40 
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Fig. 3. Waveforms, each graph plots several patterns from class 1, 2 and 3 (top to bottom). The first 21 
components contain the class information, the last 19 are noisy components. 

m 
Fig. 4. Final MSE for waveforms, net 40-10-3 (top) and 40-3 (bottom). 
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where xi denotes the ith component of a pattern x, u is a uniform random 
variable in [O, 11, Ed is generated according to a normal distribution MO, 11, m and 
n identify the two waves used in this combination, i.e. the class of pattern x. Ok 
has 300 elements, 0; 1000 and 0; 5000. 

Fig. 4 gives the final performances at the end of GBP with net 40-10-3 and net 
40-3. These were obtained for the following values set after cross validation: 
Tl = 10, OL = 0.85, E,, = 0.2, Ed = 0.0001, 8, = 0.0001 (net 40-10-3) and Ti = 30, and 
CL = 0.95, for &a = 0.2, E~ = 0.0001, 0, = 0.0001 (net 40-31. 

4. Optimal cell damage 

4.1. The algorithm 

We now describe our variable selection procedure which is based on an 
extension of OBD. The cost variation can be approximated to order 2, around a 
local minimum IV, by a quadratic form 1221 (Appendix 2). Discarding a variable Xi 
can be implemented by setting to 8 all weights Wji in Fan-Out(i), the Fan-Out of 
input neuron i. Thus the resulting cost is just the sum of the costs associated to the 
suppression of the various weights. Similar methods have been proposed for 
discarding hidden units [9]. 

The saliency of variable i is thus defined as: 

5i= C sj 

jsFan_Out(i) 
(4.1) 

where sj is the saliency of weight II$ (2.3). 
Our algorithm for OCD has been run as follows (after normalization of data as 

indicated in Section 3): if the relative average variation of cost in two successive 
periods is too small, then prune a fraction 4 of inputs. 

OCD i f r(W, D;, t - 1, Tl> I 8, and r(W, D&, t, Tl) I 8, (4.2) 
then l compute saliencies Ji at time t and order them: ii, 2 5i, 2 

> 5d$ . . . _ 
l choose p such that: Cf= ,I;,/Cp, Jir 2 4 and eliminate variables 

lp+l,...,lp 
continue OCD 

else continue GBP 

Pruning starts early if fi2 is large, late otherwise. Bot.h parameters 8, and 4 are 
determined by cross-validation. 

To assess the quality of the selection, we should think of the practical use of 
variable selection: typically one uses a relatively small data set, to decide upon the 
best subset of variables; then one gathers a larger data set, where only the selected 
subset of variables is measured, and train a network on this data set. If the selected 
subset is good, the new network (trained on smaller dimension inputs) should be as 
good - or even better - than the original network trained on the full dimension 
inputs. 
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Fig. 5. Final MSE and selected variables for time series after OCD. 

selected set 461 IO 46127 -- .f~!..!-““.. ” L*.&..- _.-. . . ..LL”L.“L.“.....“.. - 
Net 3-7-l 4-7-l 5-7-I 10-7-l 12-1 

D’ ,)I 0.04553 0.04495 0.0446S 0.04359 0.04461 

0; 0.04851 0.04790 0.04832 0.05049 0.04629 

@I* 0.04533 0.04488 0.04451 -0.04672 0.04209 

Fig. 6. Performances of networks retrained on the selecfed sets of variables for Time series. 

4.2. Time series 

For time series we ran our OCD algorithm with Tl = 5 and cx = 3/4 (as 
determined in Section 3.2). Results are shown in Fig. 5: for the optimal values 
4 * = 0.99 and 8, = 0.05 or 0.1, our variable selection procedure has selected the 
appropriate variables x,-6, xI_+ x,_~: (variables 1, 4 and 6 in Fig. 5). 

Fig. 7. Final MSE and selected variable number for Wavefoims after OCD. 
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Fig. 8. Selected variables for the different selection methods on Waveforms. M-X: method M on 
network X(X = 40-10-3 or 40-3). OCD: OCD (Section 4.3); WD: simple Weight Decay (Section 5.2.2); 
RegCV: regularization with Gaussian mixture (Section 5.3.2); Reg.Est: regularization with hyperparam- 
eters estimated during training (Section 5.4.2). 

As can be seen in Fig. 5, pruning variables also has the side effect of decreasing 
the final MSE. 

The s t e p w i se procedure in SAS also selected the set of variables 1, 4, 6 (see 
Appendix 2). From which it follows that OCD has similar performances as SAS 
s t e p w i s e (in terms of the selected subset): in fact, OCD is less efficient, since it 
requires quite a large overhead in computing time. 

Fig. 6 shows the benefit of variable selection: network 3-7-l retrained with only 
the selected variables achieves a lower final MSE than the original net 10-7-l. 

Fig. 9. Performances of networks retrained on the selected sets of variables for Waveforms. The left 
column x designates the set of variables selected by the corresponding method (Fig. 8). Columns ‘set’ - 
3 (resp. ‘set’-10-3) give the performances of network y-3 (resp. y-10-3), where y is the number of 
variables selected in set x. Networks y-3 and y-10-3 are retrained on set n. 
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Fig. 10. MLP used to produce our predictor. 

4.3. Waveform 

For the waveforms, we ran our OCD algorithm with values of Tr and cx as 
determined in Section 3.3, both for network 40-10-3 and 40-3. Results are shown in 
Fig. 7: for the optimal values q * = 0.985 and 8, = 0.01, our variable selection 
procedure selected 14 variables among the 21 first - the signal - (the same for 
both networks, except for one variable) and eliminated all the noise (the 19 last 
variables): see Fig. 8. Note that SAS did not succeed in eliminating all the noise. 
Error bars are computed as indicated in Annex 3. 

As can be seen in Fig. 9, variable selection increases performances by more than 
4% compared to SAS selection. 

5. Regularization 

5.1. Introduction 

We will restrict our analysis here to the case of a multilayer perceptron (MLP) 
with only one hidden layer, and full connections. Extension to more complex 
architectures is straightforward although its application may be more difficult. Let 
us suppose that our MLP (Fig. 10) has P inputs, h hidden units and p output 
units, and denote V, resp. W, the weights from input to hidden, resp. hidden to 
output layer and V’ the bias vector to hidden units (W includes the bias to the 
outputs). y is thus the weight vector exiting from unit i discarding feature i is 
equivalent to setting V;: to 0. 

With these notations, Eq. (2.6) becomes: 

1 m 
M(&.‘,, v, W) = 2a2 kXIIIF(X’) -ykl12-ln P(V,, V, W) (5-l) 

We will use two different priors P<V,, V, W): a Gaussian and a Gaussian 
mixture. 
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5.2. Simple weight decay 

5.2.1. The algorithm 
To select input variables, we will take 

This is almost identical to weight-decay, except that we only constrain the input- 

a Gaussian for P(V), i.e.: 

(5.2) 

to-hidden weights, and not the other weights. This reflects our goal of pruning 
those weights, while we do not have, a priori, any constraint on the remaining 
weights. 

Our variable selection technique run as follows: first use a R e g u 1 a r i z a t i on 
algorithm, then a Variable selection algorithm. In the Regularization 
algorithm, we first start by a few steps of the usual Square Error cost (to start 
fitting the data), then move on to the regularized cost function M of 6.1): 

Regularization 
l run N steps of on-line GBP with E = &a and cost function C. 
0 from now on use cost function M. 
@while E>E~ do 

(5.3) 

run on-line GBP with E 
i f r(W, Ok, t, Tl) I -8, 

then dt + 1) = ax(t) e 1 se dt + ll= e(t) 
endwhi le 

where r is defined as before by (3.11, i.e. using function C. 
This algorithm is executed, with the values of N, Ti and a as set by cross-vali- 

dation after GBP (see Section 3.2.1, for the given values of &a, or and 8,. The first 
N steps are exactly as before; from N on, regularization starts. 

Let A = a2/c$, this parameter must be estimated from the data. Usually we 
have no knowledge about u, so we used cross validation to set parameter A*, by 
comparing the MSEs on 0; and selecting the parameter value corresponding to 
the minimum error on 0;. From now on, cost function M will use that value of 
\* 
h . 

Let us then define, for every input variable i, its weight variance uar,. ~a r i - 
a b 1 e s e 1 e c t i on is run as follows (5.4): p variables are selected so as to retain a 
proportion 4 of the total variances uar,. GBP and V a r i a b 1 e se 1 e c t i on are 
thus alternated until the stopping criterion for GBP is met. q is set by cross 
validation: 

Variable selection 
l order variances: uari, r uariz 2 . . . 2 uarip 
l choose smallest p such that: C$=ruarik 2 qCi=ruarik 

(5.41 
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Fig. 11. Weight Decay on Time series: determination of A’ after Regu 1 a r i z a t i on and q l after 
~a r i a b t e se 1 et t i on. The subset of variables selected in each case is shown in the bottom lines. 

l eliminate variables i, + I to i, 
0 run N’ steps of on-line GBP with E = Em and’ cost function M. 

5.2.2. Time series 
Results are shown in Fig. 11. 
Results (Fig. 6) show that our WD-based selection indeed worked well. If we 

use as inputs the variables selected by WD (from results shown in Fig. 11, we have 
selected the 4 variables x+~, x~_~, x,-r and xt_rO), and retrain a network 4-7-l 
with only these inputs, we obtain a final MSE lower than both the initial 10-7-l 
network and the network 3-7-l retrained on the variables selected by SAS or OCD 
(for an analysis of the significance of these results, see Appendix 3 where error 
bars are provided). 

It might seem strange that the best choice would be to select, beside the obvious 
variables x,_~, x,_~, x,_~, variable xI_ro also, which does not appear in the 
expression of (3.2) for y,. However, if one writes expression (3.2) for variable x+~, 
variable x, _ i. will indeed appear: in fact x,_ i. is implicitly present in variable y,, 
and our selection process has been able to take advantage of this implicit 
correlation. 

Fig. 12. Weight Decay on Waveforms: determination of A’ after Regu 1 a r i z a t i on and q * after 
~a r i a b t e se t,e c t i on. The upper part of the table corresponds to net 40-3, the lower part to 
40-10-3. The number of variables selected in each case is shown in the bottom lines (NbSelVar). 
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These results also shed light on the validity of our a-priori assumption on the 
weights: a Gaussian prior is certainly reasonable, since it allows us to improve on 
our predictor’s accuracy. The question is now to see whether we could find a better 
prior: we will turn, in Section 5.3, to a Gaussian mixture prior. 

5.2.3. Waveforms 
Results in Fig. 12 show the performances of our WD-based selection. Note that 

the Weight Decay technique selected more variables than OCD or SAS, although 
always in the ‘signal’ part: it made use of these for increased performances on test 
set. The Gaussian prior assumption is in this sense validated. 

5.3. Gaussian mixture prior 

5.3.1. The algorithm 
Assume a priori that weights V and W are independent (which is not true any 

more as soon as learning starts!) and that W, resp. V, is Gaussian N(0, a;), resp. 
N(0, ai>. F’s are supposed to be independently distributed with a Gaussian 
mixture of two components: one - in proportion P - MO, of) has a large variance 
a: and the other - in proportion (1 - TTT) - N(O, a:> a small one a:. Under these 
assumptions, we have: 

In P(V,, I/, W) a - 

1 (5.5) 
M(Vb, V, W) is minimized, through an on-line GBP (see Section 3). We have to 
determine the following parameters: a$, a:, a:, ai, r, 4 and u*. There do not 
exist, at the present moment, exact techniques to compute optimal values of the 
hyperparameters: the Bayesian optimization approach 1241, for example, relies on 
assumptions and is very computation expensive. 

We have tested various methods to determine the hyperparameters: fixing some 
and determining the others by cross-validation or fixing some and estimating 
others. We describe some results of these different techniques in the following 
paragraphs. 

Fig. 13. Time series: determination of P * with R e 9 u 1 a r i L a t i on (with Gaussian mixture) and of q * 
withvariable selection. 
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X3.2. Time series 
In this paragraph, all hyperparameters are held constant (a$ = a: = ui = 1, a: 

= O.OOS>, while weights V and W are updated; T, u2 (in 5.1) are set by cross-vali- 
dation during algorithm Regu 1 a P i z a t i on: only results with the best u2 are 
given. Then, as for weight decay, the v a r i a b 1 e s e 1 e c t i on algorithm is run 
and 4 is set by cross-validation. Results are shown in Fig. 13. 

Comparison of performances of the net 5-7-l retrained with the selected 
variable subset (Fig. 6) shows that, finally, it is the set of variables selected by this 
Gaussian mixture regularization which gives the best performances on test set. The 
analysis of error bars (see Appendix 3) shows that net 5-7-l has an MSE 
significantly smaller than that of net 3-7-l: thus our variable selection approach 
with regularization and a Gaussian mixture prior improves upon both OCD and 
stepwise. 

Notice that our technique has learned to use both ‘explicit’ variables 4, 6 and 1 

(X,-J, xt-6, x,-r) and ‘implicit’ variables 2, 7 (x,_~, x,_?) coming from Y~_~. 

5.3.3. Waveforms 
For this problem, we have tested the effectiveness of cross-validation for setting 

the mixture parameters. Hyperparameters T and u2 are thus fixed; uf, u,” (and 
a& for net 40-10-3) are determined by cross-validation with R e g u 1 a r i z a t i on 
and q with Variable selection. In this case, best performances were ob- 
tained for very high values af the variances, which is equivalent to zeroing the 
mixture a priori hypothesis (third term of Eq. (5.5) right member). Cross-validation 
thus converged to a trivial solution where no regularization is used for the input to 
hidden weights. One reason may be that in this case, variable selection is relatively 
easy and simple procedures like V a r i a b 1 e s e 1 e c t i on perform well enough. 
Note however that this is not the case with the default stepdisc SAS procedure 
which has been used here. 

5.4. Hyperparameters estimation 

Normally all parameters should be set appropriately. Various methods exist: 
learning, estimation, cross-validation or exact computation, e.g. through bayesian 
theory [25]. Cross-validation, which we have used in this paper, is very computation 

Fig. 14. Time series, final MSE reached after Rcgu 1 a r i za t i on, when parameters are set by 
cross-validation (left) or estimated (right). 
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Fig. 15. Time series, weight variances of input units after training with R e g u 1 a r i z a t i on. 

intensive. One can thus try to estimate some of these parameters. We have 
estimatdd hyper-parameters for the two problems. We present below an example 
of such an approach for time series. This approach worked well also for the 
classification problem but gave performances similar to the other methods (see 
Figs. 8 and 9). 

For the time series, we set uw- * - a: = 1 fixed a priori. We then train N steps 
with cost function C. We then use as an estimate for a* the MSE on Ok, a new 
estimate being computed after each epoch. a,* is progressively decreased through 
learning. Results (Fig. 14) are very good in terms of final MSE, as compared to the 
final MSE obtained after R e g u 1 a r i z a t i on for our previous setting of parame- 
ters. 

In addition, if one look at the weights variances uuri of the 10 input units, one 
can easily select the most significant variables: since there is at least a 4 order of 
magnitude difference (see Fig. 15). 

However, we see that the algorithm has just picked the ‘obvious’ solution, and 
not the better ones found out by the previous methods. Additional work is 
certainly needed to explore more systematically the various methods for hyper- 
parameters setting. 

6. Conclusion 

We have presented here a technique based on regularization for variable 
selection, with two different regularizing terms, coming from different hypothesis 
on the weights priors (Gaussian and mixture of Gaussian& The regularization with 
gaussian mixture gave the best final performances on test set for a synthetic time 
series example, as compared to the WD-based method, a conventional statistic 
method (s t e pw i s e in SAS) or a pruning method (OCD). 

For the classification example, the three NN based methods gave similar 
performances, and are significatively better than standard classical techniques. 

The methods we propose still suffer from various problems: 
- There are many parameters which have to be set by cross validation. This is far 

too computation intensive in practical problems. In particular, our version of 
GBP should be replaced in the case of approximation or identification problems 
such as the time series in this paper, by a parameter-free technique, e.g. 
conjugate gradients [28]. 

- The results are very sensitive to the a priori choices of parameters (e.g. 
u*, a&, a:, $1. 
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- Input correlation is not taken into account, which means that even linearly 
dependent parameters may be selected. 

Appendix 1. Stepwise procedure 

Let k s N be the size of feature space at some given time: we want to know 
whether to retain all k variables or discard k - q of them. Let F be defined as: 

F= m-k IIf&- II* 
k-q IIY-fk II* ’ (A4 

where _Y is the sample output vector (Y ‘, . . . , YV, 2, i = q, k, is the estimation 
produced when using i variables: 

g= (F,(X1),...,F,.(X”))f (A4 

Let 8, be given by: 

P(F>Q=a (A.9 
where F is a Fisher-Snedecor variable with (k - q, m - k) degrees of freedom and 
OL is some confidence level (e.g. (Y = 0.95). Then, if the measured ratio F (A.11 is 
larger than f3,, all k variables are kept, otherwise q variables only are: this is a 
F - t e s t of the null hypothesis H, that the k - q variables are significant. 

F>8, accept H,: use all k variables (A4 
F-CO, reject H,: use q variables, reject the other k - q variables 

For a given size n of the feature space, selecting the best subset x of n features 
out of the N possible (X1,. . . , XN) is a combinatorial search problem (there are 
(N!)/(n!(N - n)!) such subsets). So exhaustive search is not feasible. If the feature 
selection criterion J is monotonous, that is: 

K,CN,C **a CK,=4(N,) <J(K*) I . . . I.&.) (A-5) 
where N, contains k variables Xi, then a simple branch-and-bound algorithm [19] 
allows to restrict the search and efficiently come up with an optimal feature vector. 
However, most selection criteria are not monotonous, and thus only suboptimal 
procedures are known. 

For example, the sequent i a 1 forward method progressively builds up a 
vector x, from the empty set, by adding one feature at a time, selected to maximise 
criterion J. More precisely, if N, is the feature vector at instant k, a feature xk + 1 
is selected in X- K, so that: 

J(N,u {‘k+l)) =x,~~~x j(‘k” {‘iI) (A-6) 
k 

The se q u e n t i a 1 b g c k u a r d technique is similar, in opposite direction: start- 
ing from the complete vector X, features are eliminated one at a time so as to 
maximise the criterion: 

J(Kn-k - Ix/c+ll) =x ~Rax_kJ(x~-k - Ixil) 
1 N 

(A.71 
where K,_, is the feature vector at iteration k. 
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Vanable * F.Villur: P> F 
6 
1 --‘!&y___--_ ._____.$y 
4 6.46 0.01 IS 

Fig. 16. Stepwise procedure. P > F is the probability that the F stat. is superior to the F value. 

The F-factor can be used as a criterion J; Eqs. (A.6) and (A.71 then become: 

where Kk C Xb+l = Xk U {xi} and &, resp. $j+r, is the estimator produced using 
variables in Nk, resp. Eli+r. 

Fi=(m-N+k) 
II&-k -&,-k-l iI2 

II~-&-k II2 ’ 
xk+l=ATg max Fi 

Xi”X,_, 
(A.9) 

where RN_, 1 Nh._k_r = RN_, - {Xi} and. &_k, resp. ?&-k-r, is the eStimatOr 

produced using variables in XN_k, resp. XL_,_,. 

The s t e p w i s e starts from an empty variable subset, and then alternates the 
sequential forward and backward procedures. We run these procedures 
with a confidence level of 0.85, and entering/eliminating one variable at a time. 

For example, the s t e p w i s e procedure enters the variables as shown in Fig. 16, 
and then no other variable met the 0.85 confidence level for entering or exiting the 
model. 

Stepdkc procedure 

The Stepdisc procedure implemented in SAS for selecting variables for discrimi- 
nation tasks relies on the hypothesis that the classes are multi-normal with equal 
covariance matrices. The criterion for variable selection is the minimization of 
Wilks’ lambda A,: for 4 variables, 

IW, I 
*,= ITJ 

where Wq, Tq are respectively the within and total covariance matrices. We have 
used the stepwise version of Stepdisc which alternates forward and backward 
selection. It is possible to devise an F-ratio which is equivalent to the use of Wilks’ 
statistic. Significance levels were set at the same values as above, Stepdisc selected 
14 variables (see Fig. 8). Fig. 17 gives the variables selected and the values for F 
and the associated confidence value. 

Appendix 2. Saliency 

The usual cost function is defined as: 

C(W,D,)=$~llF,(x”)-ykI12 
k=l 

(A.lO) 
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Fig. 17. Stepdisc results on the waveforms. P > F is the probability that the F stat is superior to the F 
value. 

To order 2, the cost function C of Eq. (A.10) can be approximated, around a 
minimum W, by: 

C(W) =C(W,) + (W- W,)‘*VC(W,) 

+&V- W,)‘*H(W*) *(W-W,) +o( IIW- W, II’) 

or, since W, is a minimum 

C(W) = C( WO) + $CHiiAy’ + $cHijAyAy + u( II W- W,, II “) 
i ij 

where AW= W- W,. 
If we assume that the Hessian can be approximated by a diagonal matrix, and 

that the cost is locally quadratic, then we obtain: 

C(W) = C( W,) + +miiAK2 
i 

and the saliency of weight i is thus: 

si = $4~2 = ; 
a2C 
---q2 
aiq2 

(A.ll) 

Appendix 3. Error bars 

Prediction 

Our method to compute error bars is based on a technique introduced in 1121: if 
one assumes a probability distribution on Neural Network weights, then this 
induces a probability distribution on the NN outputs. The variance of this distribu- 
tion provides error bars on the outputs. It is then easy to use those to provide error 
bars for other measures, such as e.g. MSE, or arv. 

Suppose that weights follow a Gaussian distribution, IocaIly around a minimum 
W, (this is a common assumption, see e.g. [23,24]): 

p(W) r ,e-P~+Hiiiiw: (A.12) 



244 T. Cibas et al./Neuroconaputing 12 (1996) 223-248 

where notations are as in Appendix 2, CY and B being hyper-parameters which have 
to be determined. 

Using results in [23,24], the regularizing hyper-parameter p can be estimated 
by: 

mQ 
@* = 2C(W,, qJ 

(A.13) 

Q is the output dimension; in this paper, we have Q = 1. 
Then, assuming that the output is linear (as is our case in this paper), [12] show 

that, for every input x 
variance a$ given by: 

k, the outputs follow a Gaussian with mean FN(xk) and 

2 _- r.w 
ajk -VT j= L.,Q 

ii 

(A.14) 

where rji(k) is the gradient of the output FN(xk) with respect to weight Wi, and 
the Hessian is evaluated for input vector x k. The error bar on output j k thus (Iljk. 

It then follows that the MSE on data set can be bounded in the interval: 

I(D) = pm-A_, MSE+A+] 
where: 

A_=; c IFN(Xk) -Ykh 

W,Yk)ED 

Net Set MSE MSE- A MSE+A.+ 

12-1 D!, 0.0446 I 0.04439 0.04484 

D,Y, 0.04629 0.04606 om653 

#I, w4209 0.04188 0.0423 1 

11%7- 1 D;,, 0.04359 0.043 I 1 0.04405 

%I 0.05049 0.05oc)4 0.05101 

% 0.04672 0.04625 0.04720 

3-7-1 ol,, 0.04553 0.04524 0.04582 

DI, 0.04x5 I 0.04822 0.04881 

D:r, O.WS.73 o.wso5 0.04562 

4-7-l D!, 0.&49s O.W463 0.04527 

QY, OS)4790 0.04758 0.04823 

@,I 0.04488 O.O4456 0.04521 

5-7-I Q! 0.04465 w4430 0.04500 

N* 0.04832 0.04796 0.04867 

r>l,, O.ll445 I 0.04417 0.04486 

Fig. 18. Error bars on MSE for the various networks found in the paper. 

(A.15) 
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Fig. 19. Confidence intervals for the networks retrained with the variables subsets, selected by OCD - 
or stepuise - RegularizationwithweightdecayorwithaGaussianmixture. 

where 0~~ is the expression given in (A.141, where index j has been dropped, since 
we only have one output <Q = 1). 

These error-bars are not exact: they rely on various assumptions made along the 
above derivation. However, we have usually found these error bars correct on 
prediction problems 1211. 

We give below (Fig. 18) the various intervals found for the networks described 
in the paper. 

These error bars demonstrate (Fig. 19) that: 
- variable selection by OCD - or the s t e pu i se technique - is significantly 

worse than by R e g IJ 1 a r i z a t i on with a Gaussian mixture. 
- variable selection by OCD - or the s t e p w i s e technique - is not significantly 

worse than by R e g u 1 a r i z a t i on with Weight Decay. 
- variable selection by R e g u 1 a r i z a t i on with a Gaussian mixture is not signifi- 

cantly better than by R eg u 1 a r i z a t i on with Weight Decay. The two priors on 
weights lead to similar results. 

Classification 

Let p be the classification error and f the observed frequency, p can be 
considered as a proportion for a binomial law. Under a normal assumption, the 1-a 
confidence interval P(p, <p <p2) = 1 - OL is given by: 

2f+- 
“> +u.,/-Gfyj 

Pl = 
d/2 

2 l+- ( 1 N 

2f+ “p ua,2/w 

and p2 = 

,(I+%) 
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Fig. 20. Confidence intervals for the waveforms classification problem. # nb gives the size of the 
corresponding set. 

where N is the population size and u,,~ is the fractil of the normal law at risk 
(r/2. Values of pl, p2 for the different set sizes are given in Fig. 20. 
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