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Abstract—A novel loss function to train a net of K single-layer perceptrons

(KSLPs) is suggested, where pairwise misclassification cost matrix can be

incorporated directly. The complexity of the network remains the same; a

gradient’s computation of the loss function does not necessitate additional

calculations. Minimization of the loss requires a smaller number of training epochs.

Efficacy of cost-sensitive methods depends on the cost matrix, the overlap of the

pattern classes, and sample sizes. Experiments with real-world pattern recognition

(PR) tasks show that employment of novel loss function usually outperforms three

benchmark methods.

Index Terms—Cost-sensitive learning, loss function, pairwise classification,

perceptron.

Ç

1 INTRODUCTION

IN two category situations, the single-layer perceptron (SLP)- based
classifiers [1], [2], [3] possess a number of qualities. If specifically
trained, SLP can approach seven classifiers of diverse complexity:
euclidean distance, regularized and standard Fisher, robust,
minimal empirical error, and maximum margin (support vectors)
[3], [4]. If training is stopped in time, binary perceptron can save
almost all useful information contained in a properly defined
initial weight vector [5]. One can specify prices (costs) of incorrect
decisions Cij (it is a price of deciding in favor of class �j when the
true class is �i) and modify an importance of training sets of
opposite pattern classes (rescaling approach) [6], [7].

In a generalization of cost-sensitive training, one can assume
that the misclassification costs depend on the particular p-dimensional
input vector xx ¼ ðx1; x2; . . . ; xpÞT (the superscript “T” denotes the
transposition operation), and not only on the class the vector xx
belongs to. A nice illustration of the class-dependent cost is the
classification of credit applicants to a bank as either being good or
bad customers. Two misclassification costs depend on the credit
size. So, the costs are diverse for different customers and corrupted
by a noise-variation of the interest rate [8], [9].

Imperative direction in the cost-sensitive learning is the multi-
class case. In practice, time and again, one faces problems where
misclassification costs depend on the pattern class the vector xx is allocated
to [10], [11]. An example can be a medical diagnosis task. Here, the
prices of incorrect decisions depend on a particular diagnosis. The
cost-sensitive solution is characterized by K � K cost matrix CC ¼
ððCijÞÞ, where, for the sake of simplicity, we assume that Cii ¼ 0.

A standard single or multilayer perceptron’s loss function used
to find the weights expresses a sum of squared differences between
desired outputs and real ones averaged over all outputs, classes,
and training vectors [12]. This way is beneficial for inclusion of
misclassification costs C1; C2; . . . ; CK that depend only on a class
label the vector xx belongs to. It is not suited for simultaneous appraisal
of all K(K � 1) Cij values. A large number of novel algorithms and

extensions to existing ones are dealing with class-dependent costs.
Most of them are based on the multiclass (multicategory)
classification task split into Kpw ¼ KðK � 1Þ=2 binary (pairwise)
problems. The pairs of the costs, Cij and Cji, are used to design each
binary classifier. To make a final allocation of vector xx, one fuses
Kpw binary solutions. Such solutions are developed for support
vector, decision tree classifiers, and fit for the perceptrons as well
[8], [9], [10], [11]. A comparison of decision making strategies
constitutes a separate research topic. Our aim is to develop the
perceptron training procedure suitable for pairwise costs inclusion.

Two solutions to deal with the cost diversity could be applied
for multicategory perceptron training. In a standard rescaling
approach, the pairwise costs are averaged

�Ci ¼
X
j

Cij=ðK � 1Þ; ð1Þ

and the decision making procedure based on the novel costs, �Ci, is
applied later [6], [7]. It is equivalent to weighting of contributions
of the input vectors by rescaling coefficients ½r1; r2; . . . ; rK � ¼ rrB,
where vector rrB is proportional to �Ci. Zhou and Liu (Z&L) [11]
suggested another way to determine optimal rescaling coefficients.
They assumed that costs matrix is consistent, i.e., values Cij can be
expressed as a ratio of coefficients r1, r2; . . . ; rK :

Cij=Cji ¼ ri=rj: ð2Þ

Usually, values Cij are chosen arbitrarily. Strictly speaking,
Z&L’s suggestion to find rescaling coefficients should not be
applied in such cases. If one ignores requirements in (2), for
certain pattern recognition tasks and cost matrices, approximate
solutions can be unsuccessful.

The rescaling and two-stage decision making methodologies
possess shortcomings. In the rescaling approach, one does not pay
attention to the data. Only the cost matrix is used to find the
rescaling coefficients. Actually, some of the pairwise probabilities
of misclassification, Pij, can be minor and have a small impact on
the final loss [10]. In the two-stage decision making, each of the
Kpw pairwise classifiers is focused on the single pair of the costs,
Cij, and Cij. The amount of computations increases quadratically
with an increase in the number of the classes.

To have an optimal procedure, one ought to take into account
the costs Cij and classification errors Pij. In the classic Amari paper
[13], integration over the patterns misclassified was considered. In
the recent proposal of Santos-Rodrı́guez et al. [14] it was suggested
to use an approximation, the Bregman divergences, to evaluate
posterior probabilities Pi of vectors that are close to the decision
boundaries. Excluding papers [13], [14], the problem of finding Pi
in dependence of a liberally selected matrix (Cij) was not
considered so far. The inability to individuate pairwise costs is
an important shortcoming of present day theory.

The paper focuses on the quality of pairwise decision
boundaries. It improves ordinary loss function used to train
KSLPs [12] and allows obtaining smaller misclassification error
rates if the classes do not overlap drastically. It also allows
incorporating the pairwise misclassification costs directly. Mini-
mization of the loss function is fast. In Section 2, we analyze
peculiarities of the novel loss function. In Section 3, we show that
the efficacy of the novel method depends on the cost matrix, the
pairwise classification error rates, and sample sizes. Finally, in
Section 4, we discuss unsolved issues for future research.

2 PROPOSED METHOD

2.1 A Standard K-Category Single-Layer Perceptron

The K-class net of perceptrons [1], [2], [3], [12] performs classifica-
tion according to the maximum of K outputs, oj ¼ fðnetjÞ
ðj ¼ 1; 2; . . . ; KÞ, where netj ¼ wwTj _xx, wwj ¼ ðvj0; vj1; vj2; . . . ; vjg; . . . ;
vjpÞT , _xx ¼ ð1; x1; x2; . . . ; xg; . . . ; xpÞT are the “augmented”
ðpþ 1Þ-dimensional weight and input vectors, and fðnetjÞ
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is a nonlinear soft limiting activation function, e.g.,
fðnetÞ ¼ 1=ð1þ expð�netÞÞ. A standard loss function regularly
used to find perceptron weights is

Lossstand ¼
XK
h¼1

XK
j¼1

XNh

s¼1

�
thj � f

�
wTj _xðhÞs

��2
; ð3Þ

where thj is a desired output corresponding to the jth output and
the hth class training vector, _xxðhÞs . For the sigmoid function, we
assume: thj ¼ 1 if j ¼ h, and thj ¼ 0 if j 6¼ h.

While minimizing loss function (3), we work with K separate
sums

PK
h¼1

PNh

s¼1 ðthj � fðwTj _xxðhÞs ÞÞ
2 independently (j ¼ 1; . . . ; K).

To take into account pairwise costs, we have to evaluate influences
of the pairwise classification error rates. Training vectors of two
classes have to be used in such a scenario. Consequently,
minimization of (3) could lead to nonoptimal results. In Fig. 1, we
present two-dimensional (2D) example with three Gaussian classes.

We see three pairwise decision lines ðww1 � ww2ÞT _xx ¼ 0, ðww1 �
ww3ÞT _xx ¼ 0, and ðww2 � ww3ÞT _xx ¼ 0 formed by standardKSLP (Fig. 1a)
and that formed by three separately trained SLPs (Fig. 1b). In Fig. 1b,
intersections of three lines form a triangle xyz. Inside the triangle,
classification is ambiguous. In this example, we have no training
vectors inside the triangle. That is the reason why we have low
misclassification error rate: 2.5 percent. KSLP, however, generates
6.7 percent of classification errors. One can say that it is a
consequence of an unspoken requirement that three decision lines
of KSLP intersect in a single point (point A in Fig. 1a).

While minimizing single terms,
PK

h¼1

PNh

s¼1ðthj � fðwwTi _xxðhÞs ÞÞ
2, of

function (3), we solve K one-against-all classification problems

with imbalanced training sets: We have Nh training vectors in one

group and
PK

i¼1 Ni �Nh vectors in another one. If sample sizes

and prior probabilities are not proportional, i.e., qh 6¼ Nh=
PK

i¼1 Ni,

the class imbalance should be included into the loss function.

Instead of loss (3), one needs to use a modified one

Lossimbalance ¼
XK
h¼1

Chqh
Nh

XK
j¼1

XNh

s¼1

�
thj � f

�
wwTj _xxðhÞs

��2
: ð4Þ

2.2 A Novel Loss Function

In order to force the KSLP to pay more attention to the pairwise
decision boundaries, instead of minimizing weight vectors
ww1; ww2; . . . ; wwj; . . . ; wwK directly, we focus our attention on the Kpw

difference weight vectors, wwjh ¼ wwj � wwh (j 6¼ h), and replace regular
cost function (4) with

Lossmodified ¼
XK
h¼1

Chqh
Nh

XK

j6¼h j¼1

XNh

s¼1

�
thj � f

�
ðwwj � wwhÞT _xxðhÞs

��2 ¼

¼
XK
h¼1

Chqh
Nh

XK

j6¼h j¼1

XNh

s¼1

�
fðwwj � wwhÞT _xxðhÞs

��2
;

ð5Þ

where we used the earlier assumption that thj ¼ 0 if j 6¼ h.

After introducing the pairwise costs Cij, with assumption
Cii ¼ 0, we have

Lossnovel ¼
XK
h¼1

qh
Nh

XK
j¼1

Chj
XNh

s¼1

�
fðwwj � wwhÞT _xxðhÞs

��2
: ð6Þ

While minimizing loss (6), we calculate K gradients according to
wwg (g ¼ 1; 2; . . . ;K):

@Lossnovel=@wwg ¼ 2
XK

h 6¼g h¼1

qhChj
Nh

XNh

s¼1

f
�
ðwwg � wwhÞT _xxðhÞs

�

� f 0
�
ðwwg � wwhÞT _xxðhÞs

�
_xxðhÞs � 2

XK

j6¼g j¼1

qgCgj
Ng

XNg

s¼1

f
�
ðwwj � wwgÞT _xxðgÞs

�

� f 0
�
ðwwj � wwgÞT _xxðgÞs

�
_xxðgÞs :

ð7Þ

A major part of the calculation is devoted to find weighted sums
wwTj _xxðhÞs . For conventional and novel loss, we have to compute
K
P

K
h¼1Nh such sums. To find derivatives, f 0ðwwTj _xxðhÞs � wwTj _xxðhÞs Þ, we

use a lookup table. Thus, the amounts of the calculations necessary
to find the gradients of loss functions (4) and (6) are similar.
Moreover, direct minimization of pairwise loss routinely requires
smaller number of training epochs.

3 EXPERIMENTS

An objective is to compare efficacies of the employment of novel
loss function with three benchmark methods: traditional 0-1 loss-
based KSLP training and the two variants of handling the pairwise
costs, cost averaging (1) and the Z&L rescaling.

3.1 Two-Dimensional Artificial Data

In Figs. 1a and 1b, we showed the situation where KSLP was
ineffective in comparison with the application of three pairwise
hyperplanes. Pairwise decision boundaries formed by KSLP
trained with novel cost function (Fig. 1c), however, are closer to
the ideal pairwise decision lines (Fig. 1b) than minimization of
standard loss (Fig. 1a). The classification error is smaller:
4.6 percent versus 6.7 percent of error. To show the pros of the
new method, we generated another 2D example, where it performs
notably better (Fig. 2). We consider three rules, as follows:

1. Standard KSLP: In training, it generates 4.2 percent of
errors (Fig. 2a).

2. Ideal case with pairwise decision boundary: It generates
3.3 percent of errors (Fig. 2b).

3. Novel cost function KSLP: It generates 3.3 percent of errors
(Fig. 2c).

Like in the earlier example, the standard KSLP is not successful:
The decision boundaries of the KSLP (Fig. 2a) and three ideal
pairwise classifiers (Fig. 2b) are distant from each other in the areas
of intersection of the adjacent pattern classes. The intersection
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Fig. 1. Scatter diagrams of three pattern classes and three pairwise decision
boundaries. (a) Standard KSLP, (b) three “ideal” pairwise perceptrons, and
(c) modified KSLP.

Fig. 2. Scatter diagrams of three pattern classes and three pairwise decision
boundaries. (a) Standard KSLP, (b) ideal case, and (c) modified KSLP.
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point A (see Fig. 2a) and the ambiguity triangle xyz (Fig. 2b) are
rather distant too. In comparison with point A, the intersection
point B (Fig. 2c) formed by novel KSLP is much closer to triangle
xyz. Decision lines of novel KSLP (Fig. 2c) and ideal pairwise
classifiers (Fig. 2a) discriminate the neighboring pattern classes
similarly. Consequently, the classification error rates of the
pairwise classifiers and the new KSLP are comparable: We have
approximately 3.3 percent misclassifications. It is lower than
traditional KSLP (4.2 percent) error rate.

The above two examples demonstrate that the effectiveness of

novel loss function is problem dependent. Following the 2D examples,

an interested reader could construct a toy data model, where the

novel method outperforms the traditional KSLP several times or

be practically equivalent. Both the geometry of distributions of the

pattern classes in multidimensional input space and the values of

the pairwise costs are affecting differences between loss functions

(4) and (6). It is problematic to determine which loss function to

use in each practical case. However, the good news is that the new

method gives as good as or better results than the traditional

KSLP. We will consider this question in our experiments.

3.2 Experiments with Three Real-World Data Sets

3.2.1 The Data

The Chromosomes data set [15] is based on 30 geometrical

measurements and describes 24 classes, 500 vectors in each of

them (n ¼ 12;000). To look at a variety of pattern class configura-

tions, we also considered 100 randomly selected quadruplets of

the classes.
The Satimage data set [16] describes 36 spectral values of pixels in

a satellite image. Six classes contain 1,072, 479, 961, 415, 470, and

1,038 vectors, respectively (n ¼ 4;435).
The Yeast data set describes 10 types of yeast infections. The

classes contain 113, 84, 116, 83, 120, 56, 90, 97, 113, and 129 vectors,

respectively (n ¼ 1;001). Originally, we had 1,500 spectral features.

To form 20 similarity features, we determined two cluster centers

in each pattern class.

3.2.2 Cost Matrices

The relative effectiveness of the cost evaluation methods depends

on the K �K-dimensional cost matrices themselves. Following

previous research papers [10], [11], [14], we considered a variety (a

hundred in each experiment) of the cost matrices. In a constraint-

free matrices model, the costs Cij (j 6¼ i) were generated at random

in the interval (1 10). To satisfy the Z&L model [11], Cij values

(j > i) were generated in the interval (1 10), while elements Cij
(j > i) were determined from Cij to satisfy requirements (2). To

compare the conventional and novel loss functions, we considered

also 0-1 costs (Cij ¼ 1 if j 6¼ i).

3.2.3 Benchmark Methods

Three baseline methods were used in evaluating novel cost

function as follows:

1. the standard cost blind K class single-layer perceptron

(loss function (3)),
2. the cost-sensitive KSLPs with rescaling based on aver-

aging (1), and
3. the cost-sensitive KSLPs developed for the costs satisfying

consistency requirements (2) (Z&L method). Here, rescaling

vector rrZL ¼ ½1; rr�� is expressed as a solution of equation

CKrr
T
ZL ¼ 0; ð8Þ

where rr� ¼ ½r2; . . . ; rK �. For K ¼ 4, the Kpw �K-dimen-

sional matrix CCK is constructed as [11]

CK ¼

C21 �C12 0 0
C31 0 �C13 0
C41 0 0 �C14

0 C32 �C23 0
0 C42 0 �C24

0 0 C43 �C34

2
6666664

3
7777775
: ð9Þ

If a rank of the matrix CCK , ra � K � 1, requirements in (2)

are satisfied. Then, Z&L rescaling can be carried out

exactly. If ra ¼ K, we have an approximate solution.

3.2.4 Experimental Setup

Before training, all features of the three data sets were decorrelated
and normalized according to their eigenvectors and eigenvalues
[3]. To evaluate the classification error rates, we used twofold cross-
validation technique. Half of the data was used for training and the
remaining half was used for testing. Afterward, the training and
testing sets were interchanged. If the data size is not sufficiently
large, random split introduces considerable errors in estimation of
classification performance. To obtain reliable estimates, we
performed cross-validation experiments nCV ¼ 10 times, reshuf-
fling the data in each single pattern class every time. To stop
training optimally, pseudovalidation data sets were formed from
each class training set by means of a colored noise injection [17].
Here, for each single training vector xxðhÞs , one finds its k-nearest
neighbors, xx

ðhÞ
s1 ; . . .xx

ðhÞ
sk , from the same pattern class. Then, one adds

Gaussian Nð0; �2Þ noise nnn times along k lines connecting xxðhÞs , and
xx
ðhÞ
s1 ; . . . xx

ðhÞ
sk . We used k ¼ 2 and a noise standard deviation was

equal to distance jxxðhÞs � xx
ðhÞ
sj j. The number of artificial vectors

generated around each single training vector is nnn ¼ 2. We remind
the reader that a noise injection introduces certain supplementary
information by filling a space between nearest vectors of one
pattern class with vectors of the same category.

3.2.5 Results

Simulations confirmed that the efficacy of diverse pairwise cost
assessment techniques highly depends on the cost matrices. Usage
of the novel loss function resulted in a lower or approximately the
same loss as the best from the benchmark methods (Table 1, see
also a scatter diagram in Fig. 3a). In the rightmost column of
Table 1, we present average gain ratio, between generalization
errors of the novel and the best of three benchmark methods. The
gain was obtained even in cases where conventional 0-1 cost (cost

blind) was used. The gains for the Z&L model are smaller than that
for freely generated cost matrices. For certain data and cost
configurations, blind application of the Z&L rescaling leads to
much worse results. Strictly speaking, the Z&L rescaling could be
applied only if requirements (2) are satisfied. Therefore, in cases of
violation of requirements (2), Zhou and Liu [11] used the two-stage
decision making procedure with KðK � 1Þ=2 pairwise classifiers.

We focused on the development of the loss function useful for
the straight pairwise costs inclusion. Therefore, in the fourth series
of the experiments (the lowest three rows of Table 1), we
concentrated our attention on the diversities of the PR tasks and
the cost matrices. In 100 experiments, we considered data sets
characterized by the same number of features and the type of
pattern classes. To have assorted overlaps of the classes, we
formed 100 four-category PR tasks by randomly selecting the
quadruplets of the pattern classes. The experiments with the
100 diverse PR tasks and different cost matrices definitely
confirmed the conclusions obtained with three real-world data
sets. We remind that we compared averages of nCV ¼ 10 twofold
cross-validation trials (20 learn/test trials) and that while learning,
only training set information was used.

In comparison with the conventional loss function ((3) and (4)),
the novel loss function (6) is more complex since it requires
minimization of Kpw ¼ KðK � 1Þ=2 pairwise loss functions in an
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indirect way. Moreover, while minimizing novel loss function, we
are using training data to optimize the effects of diverse pairwise
costs. In determining the rescaling coefficients, one pays attention
to the cost matrix only, and does not pay attention to the data. As a
result, novel loss function requires larger training sets. Table 1 shows
that the lowest gain was obtained for the Yeast data, where the
sample size/dimensionality ratio was the smallest. Additional
experiments performed in a resubstitution regime (all available
data were used for training, and later, the same data were used for
testing) also confirmed the complexity/sample size issue: in large
sample situations, the gain due to applying the novel cost function
is larger.

3.3 Influence of an Overlap of the Pattern Classes

Both the conventional and the novel cost functions are aimed to
find K ðpþ 1Þ-dimensional weight vectors used to discriminate the
K pattern classes and Kpw pairs of the classes as well. If the pattern
classes overlap considerably, we cannot avoid a situation where a
notable part of incorrectly classified vectors is participating in
determining three and more weight vectors. To trace an influence of
the overlap on the effectiveness of standard and novel loss
functions, we performed an artificial experiment with a partially
synthetic data.

We have chosen the Yeast data, where the differences between
effectiveness of conventional and novel costs were the smallest.
To have small dimensionality/sample size ratio, we reduced

dimensionality up to p ¼ 8 by the principal component method.
After subtracting a mean of the data set from all 8D vectors, we
multiplied the means of each pattern class by an “overlap
coefficient” �overlap ranging in interval (0.1 2.5). In such a way, we
were changing the overlap of pseudoartificial data. Fig. 3b shows
that the generalization errors of novel KSLPs varied between
74 percent (�overlap ¼ 0:1) and 0.8 percent (�overlap ¼ 2:5). A
fraction of vectors incorrectly classified as vectors of two or more
pattern classes decreased from 70 percent up to 0.7 percent. A
ratio between generalization errors of conventional and novel
methods varied between 0.993 and 1.56 (see Fig. 3b). It means that
a small overlap of the pattern classes is more favorable to novel cost
function. Detailed analysis of the influence of overlap of the
classes as well as problems associated with complexity and
sample size issues deserve special studies.

4 CONCLUDING REMARKS

The standard loss function aimed at finding K weight vectors of
the net of perceptrons [12] is not suited to minimize pairwise
classification error rates and take into account their costs. Up to
now, a general solution of how to deal with the pairwise
misclassification costs in multicategory classification did not exist.
The known solutions in the rescaling approach were based either
on the cost averaging or require explicit relationships between the
pairwise cost values. Besides, the rescaling pays no attention to
multiclass training data. A popular alternative way to take into
account the pairwise costs is to convert the multiclass problem into
K(K � 1Þ=2 binary classification problems. Such a way, however,
requires developing prudent fusion rules to make the final
allocation. Moreover, the computational resources increase quad-
ratically with an increase in the number of the pattern classes.

Values of the pairwise costs can play essential role in the training
process. To access the pairwise costs in SLP training, we suggested
the novel loss function, where one pays attention to pairwise sums of
square errors. The relationship between network complexity and the
number of classes remains linear. Training is fast.

We found that relative efficacies of cost assessment methods
depend on the matrix of pairwise costs, on the degree of overlap of
the pattern classes, and training set size. Analysis of specially
designed artificial data models showed that the nets of K SLPs can
fail against the K-class pairwise classification in certain multiclass
tasks. Nevertheless, the experiments with real-world data sets
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TABLE 1
Average Costs and the Ratio Cbest=Cnovel

The best from the benchmark methods are marked in boldface.

Fig. 3. (a) Scatter diagram of distribution of loss values in the experiment with
Yeast data. (b) Dependence of the relative gain due to the application of the novel
loss function instead of the conventional one in a sequence of PR tasks with
varying overlap of the pattern classes.
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demonstrated that in almost all PR tasks and for all cost matrices
considered, the novel approach outperformed the benchmark ones.

In the output layers of Multilayer perceptrons (MLPs) and
Radial basic functions (RBFs) networks, we also have nets of
K class SLPs. No doubt, the novel loss function could be
incorporated into MLP and RBF loss functions. When KSLPs’
weights are large, the novel loss function (6) starts characterizing
pairwise classification error rates. An intelligent weight magnitude
control could possibly help control complexities of the pairwise
decision rules and reduce the loss in finite sample size situations.
These are topics for future research.

In spite of the fact that inclusion of the costs into learning has
been regarded as one of the most relevant topics of future machine
learning research [11], [18], due to the lack of general methodology
to design cost-sensitive classification rules, choosing the values of
pairwise misclassification costs remains an unsolved imperative
question. Free determination of the costs on the basis of “common-
sense” is possibly not the best strategy. A theory of “approximately
consistent” pairwise costs is necessary. Analysis of imbalanced
training sets, wider diversity of the pairwise costs, the influences of
the overlap of the pattern classes, and small sample size issues also
remain as important topics for future studies.
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